Aeroelasticity and Enforced Motion Frequency Lock-in Associated with Non-Synchronous Vibrations in Turbomachinery

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

80
views
136
downloads

Abstract

One of the most complex challenges in our world today is the interaction between fluids and structures. This complicated meeting is one of the focal points in the design and manufacturing of turbomachinery, whether in jet engines, steam turbines, or rocket pumps. When an unsteady aerodynamic instability interacts with the natural modes of vibration of a rigid body, a phenomenon known as Non-Synchronous Vibrations (NSV) occurs, also referred to in other parts of the world as Vortex-Induced Vibrations (VIV). These vibrations cause blade fracture and ultimately failure in jet engines; however, the underlying flow physics are much less understood than other aeroelastic phenomenon such as flutter or forced response. When the buffeting frequency of the flow around a bluff body nears one of its natural frequencies, the former frequency “locks in” to the latter. Within this “lock in” region there is only one main frequency, while outside of it there are two. Although this phenomenon has been documented both experimentally and computationally, the unsteady pressures associated with this phenomenon have not been accurately measured. In a comprehensive three-fold approach, the spectra of unsteady pressure amplitudes are collected around a few different, increasingly complex, configurations. 1. a circular cylinder 2. a symmetric NACA 0012 airfoil 3. a three-stage turbine All three exhibit NSV in wind tunnel experiments as well as computationally using fluid dynamics simulations. For all cases, the time domain unsteady lift and pressure data is Fast Fourier Transformed to provide frequency domain data. Then, the data is analyzed to understand the underlying flow physics; to do so, the unsteady pressures are separated into contributions due to the enforced motion of the body and those due to vortex shedding. Finally, the unlocked pressure spectrum is linearly combined to reconstruct the lock-in responses. These additional insights into NSV will pave the way towards a design tool for engine manufacturers. In addition, many attempts have been made to model this lock-in behavior, comparing it against experimental and computational fluid dynamics data. A reduced-order model (ROM) utilizes a Van der Pol oscillator model to capture the wake of vortices. This model has been expanded and improved to model NSV in cylinders, airfoils, and turbomachinery blades; the model proved to match experimental data better than its predecessors. This notional model will provide further insight into the phenomenon of NSV and will assist in creating a tool to design safe and efficient jet engines and steam turbines in the future. While this work focuses on Non-Synchronous Vibrations, some time was devoted to the design and manufacturing of another experimental test rig. The seven bladed linear cascade (aptly named “LASCADE”) will be used for flutter tests. The center blade oscillates about its mid-chord at an enforced frequency and amplitude, while the center three titanium printed blades contain pressure taps located at the midspan. Over the course of four years, the author has served as a design consultant, research mentor, manufacturing instructor, and project manager for this cascade. Ultimately, this work furthers the understanding of the underlying flow physics of enforced motion frequency lock-in associated with Non-Synchronous Vibrations and Flutter. The solitary experiments and simulations set the groundwork for additional studies on turbomachinery specific geometry. The three-stage turbine study is just the beginning of a full NSV study to be done in conjunction with experiments. Finally, the ROMs open the door for a full design tool to be constructed for use by turbomachinery designers and manufacturers, saving time, energy, and money in the end.

Description

Provenance

Citation

Citation

Hollenbach III, Richard Lee (2022). Aeroelasticity and Enforced Motion Frequency Lock-in Associated with Non-Synchronous Vibrations in Turbomachinery. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25216.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.