dc.description.abstract |
To understand how plant defensive traits will evolve, we need to consider the biotic
context for plant-herbivore interactions. I investigated how predators affect selection
on defensive traits in plants. First, I established the timing of resistance in three
soybean genotypes. Next, I examined the combined effects of resistance and predators
on plant fitness. I reared Mexican bean beetles (MBBs) with or without spined soldier
bugs (SSBs) on soybeans with constitutive resistance (CR) or no resistance (NR). SSBs
fed more on MBBs that fed on NR than on CR plants, and this translated into an increased
fitness benefit from predators for NR plants over CR plants. Selection for some types
of resistance in plants should thus be stronger with lower predation rates. Similarly,
I reared MBBs with or without SSBs on soybeans with early induced resistance (EI),
late induced resistance (LI), or CR. SSBs fed more on MBBs reared on LI plants than
on beetles raised on CR plants, but no more on beetles reared on EI plants than on
beetles reared on CR plants. LI plants were the only of the three soybean varieties
to receive a fitness benefit from predators, which could help explain the evolution
of this type of plant defense. The results of both experiments also suggest that predator
introductions may be more beneficial to LI or NR crop plants than EI or CR crops.
Finally, I present a model that determines the optimum amount of induced resistance
(IR) and CR for a plant growing with and without neighbors. Unlike earlier models,
our plants have a probability of being attacked that is modified by short- and long-term
feedback of plant defenses to herbivores. Higher costs of defense favor IR over CR,
while increasing herbivore attack rates or increasing the overall effectiveness of
defense results in more CR. Plants with neighbors might be selected to evolve higher
or lower levels of CR than if they were growing alone. Adding neighbors also selects
for more mixed induced/constitutive strategies for all parameters. Having defended
neighbors could thus be part of the reason why plants have evolved such mixed defense
strategies.
|
|