Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams.

Thumbnail
View / Download
228.1 Kb
Date
2009-06-12
Authors
Palkovacs, EP
Marshall, MC
Lamphere, BA
Lynch, BR
Weese, DJ
Fraser, DF
Reznick, DN
Pringle, CM
Kinnison, MT
Show More
(9 total)
Repository Usage Stats
164
views
167
downloads
Abstract
Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus-guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.
Type
Journal article
Subject
Ammonia
Animals
Biological Evolution
Biomass
Ecosystem
Eukaryota
Fundulidae
Invertebrates
Phosphates
Poecilia
Population Dynamics
Rivers
Trinidad and Tobago
Permalink
https://hdl.handle.net/10161/6535
Published Version (Please cite this version)
10.1098/rstb.2009.0016
Publication Info
Palkovacs, EP; Marshall, MC; Lamphere, BA; Lynch, BR; Weese, DJ; Fraser, DF; ... Kinnison, MT (2009). Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Philos Trans R Soc Lond B Biol Sci, 364(1523). pp. 1617-1628. 10.1098/rstb.2009.0016. Retrieved from https://hdl.handle.net/10161/6535.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University