Ricci Yang-Mills Flow

Loading...
Thumbnail Image

Date

2007-05-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

371
views
698
downloads

Abstract

Let (Mn, g) be a Riemannian manifold. Say K ! E ! M is a principal K-bundle with connection A. We define a natural evolution equation for the pair (g,A) combining the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills flow. We show that these equations are, up to di eomorphism equivalence, the gradient flow equations for a Riemannian functional on M. Associated to this energy functional is an entropy functional which is monotonically increasing in areas close to a developing singularity. This entropy functional is used to prove a non-collapsing theorem for certain solutions to Ricci Yang-Mills flow. We show that these equations, after an appropriate change of gauge, are equivalent to a strictly parabolic system, and hence prove general unique short-time existence of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type. These can be used to find a complete obstruction to long-time existence, as well as to prove a compactness theorem for Ricci Yang Mills flow solutions. Our main result is a fairly general long-time existence and convergence theorem for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g,A) satisfies equations coupling the Einstein and Yang-Mills conditions on g and A respectively. Roughly these conditions are that the associated curvature FA must be large, and satisfy a certain “stability” condition determined by a quadratic action of FA on symmetric two-tensors.

Department

Description

Provenance

Citation

Citation

Streets, Jeffrey D. (2007). Ricci Yang-Mills Flow. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/192.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.