Genotype Predicts Outcomes in Fetuses and Neonates With Severe Congenital Long QT Syndrome.

Abstract

Objectives

This study sought to determine the relationship between long QT syndrome (LQTS) subtype (LTQ1, LTQ2, LTQ3) and postnatal cardiac events (CEs).

Background

LQTS presenting with 2:1 atrioventricular block or torsades de pointes in the fetus and/or neonate has been associated with risk for major CEs, but overall outcomes and predictors remain unknown.

Methods

A retrospective study involving 25 international centers evaluated the course of fetuses/newborns diagnosed with congenital LQTS and either 2:1 atrioventricular block or torsades de pointes. The primary outcomes were age at first CE after dismissal from the newborn hospitalization and death and/or cardiac transplantation during follow-up. CE was defined as aborted cardiac arrest, appropriate shock from implantable cardioverter-defibrillator, or sudden cardiac death.

Results

A total of 84 fetuses and/or neonates were identified with LQTS (12 as LQT1, 35 as LQT2, 37 as LQT3). Median gestational age at delivery was 37 weeks (interquartile range: 35 to 39 weeks) and age at hospital discharge was 3 weeks (interquartile range: 2 to 5 weeks). Fetal demise occurred in 2 and pre-discharge death in 1. Over a median of 5.2 years, there were 1 LQT1, 3 LQT2, and 23 LQT3 CEs (13 aborted cardiac arrests, 5 sudden cardiac deaths, and 9 appropriate shocks). One patient with LQT1 and 11 patients with LQT3 died or received cardiac transplant during follow-up. The only multivariate predictor of post-discharge CEs was LQT3 status (LQT3 vs. LQT2: hazard ratio: 8.4; 95% confidence interval: 2.6 to 38.9; p < 0.001), and LQT3, relative to LQT2, genotype predicted death and/or cardiac transplant (p < 0.001).

Conclusions

In this large multicenter study, fetuses and/or neonates with LQT3 but not those with LQT1 or LQT2 presenting with severe arrhythmias were at high risk of not only frequent, but lethal CEs.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.jacep.2020.06.001

Publication Info

Moore, Jeremy P, Roberto G Gallotti, Kevin M Shannon, J Martijn Bos, Elham Sadeghi, Janette F Strasburger, Ronald T Wakai, Hitoshi Horigome, et al. (2020). Genotype Predicts Outcomes in Fetuses and Neonates With Severe Congenital Long QT Syndrome. JACC. Clinical electrophysiology, 6(12). pp. 1561–1570. 10.1016/j.jacep.2020.06.001 Retrieved from https://hdl.handle.net/10161/23422.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Landstrom

Andrew Paul Landstrom

Associate Professor of Pediatrics

Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart.  He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome.  He also specializes in the evaluation of children following a cardiac arrest or after the sudden and unexplained death of a family member.  He has expertise in cardiovascular genetics and uses it to identify individuals in a family who may be at risk of a disease, even if all clinical testing is negative.  As a scientist, he is trained in genetics and cell biology.  He runs a research lab exploring the genetic and molecular causes of arrhythmias, sudden unexplained death syndromes, and heart muscle disease (cardiomyopathies).  He utilizes patient-derived induced pluripotent stem cells and genetic mouse models to identify the mechanisms of cardiovascular genetic disease with the goal of developing novel therapies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.