Experience and Perceptions of a Family Health History Risk Assessment Tool among Multi-Ethnic Asian Breast Cancer Patients.

Abstract

A family health history-based risk assessment is particularly valuable for guiding cancer screening and treatment strategies, yet an optimal implementation depends upon end-users' values and needs. This is not only true prior to disease development, but also for those already affected. The aim of this study is to explore perceptions of the value of knowing one's family health history (FHH)-based risk, experience using a patient-facing FHH tool and the potential of the tool for wider implementation. Twenty multi-ethnic Asian patients undergoing breast cancer treatment in Singapore completed an FHH-based risk assessment. Semi-structured one-on-one interviews were conducted and data were thematically analyzed. All participants were female and slightly more than half were Chinese. The acceptance and usage of an FHH risk assessment tool for cancers and its broader implementation was affected by a perceived importance of personal control over early detection, patient concerns of anxiety for themselves and their families due to risk results, concerns for genetic discrimination, adequacy of follow-up care plans and Asian cultural beliefs toward disease and dying. This study uniquely sheds light on the factors affecting Asian breast cancer patients' perceptions about undergoing an FHH-based risk assessment, which should inform steps for a broader implementation in Asian healthcare systems.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3390/jpm11101046

Publication Info

Yoon, Sungwon, Hendra Goh, Si Ming Fung, Shihui Tang, David Matchar, Geoffrey S Ginsburg, Lori A Orlando, Joanne Ngeow, et al. (2021). Experience and Perceptions of a Family Health History Risk Assessment Tool among Multi-Ethnic Asian Breast Cancer Patients. J Pers Med, 11(10). pp. 1046–1046. 10.3390/jpm11101046 Retrieved from https://hdl.handle.net/10161/23961.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Orlando

Lori Ann Orlando

Professor of Medicine

Dr. Lori A. Orlando, MD MHS MMCI is a Professor of Medicine and Director of the Precision Medicine Program in the Center for Applied Genomics and Precision Medicine at Duke University. She attended Tulane Medical Center for both medical school (1994-1998) and Internal Medicine residency (1998-2000). There she finished AOA and received a number of awards for teaching and clinical care from the medical school and the residency programs, including the Musser-Burch-Puschett award in 2000 for academic excellence. After completing her residency, she served as Chief Medical Resident in Internal Medicine (2001) and then completed a Health Services Research Fellowship at Duke University Medical Center (2002-2004). In 2004 she also received her MHS from the Clinical Research Training Program at Duke University and joined the academic faculty at Duke. In 2005 she received the Milton W. Hamolsky Award for Outstanding Junior Faculty by the Society of General Internal Medicine. Her major research interests are decision making and patient preferences, implementation research, risk stratification for targeting preventive health services, and decision modeling. From 2004-2009 she worked with Dr. David Matchar in the Center for Clinical Heath Policy Research (CCHPR), where she specialized in decision modeling, decision making, and technology assessments. In 2009 she began working with Dr. Geoffrey Ginsburg in what is now the Center for Applied Genomics and Precision Medicine (CAGPM) and in 2014 she became the director of the Center’s Precision Medicine Program. Since joining the CAGPM she has been leading the development and implementation of MeTree, a patient-facing family health history based risk assessment and clinical decision support program designed to facilitate the uptake of risk stratified evidence-based guidelines. MeTree was designed to overcome the major barriers to collecting and using high quality family health histories to guide clinical care and has been shown to be highly effective when integrated into primary care practices. This effort started with the Genomic Medicine Model, a multi-institutional project, whose goal was to implement personalized medicine in primary care practices. The success of that project has led to funding as part of NHGRI’s IGNITE (Implementing Genomics in Clinical Practice) network. She is currently testing methods for integrating patient preferences and decision making processes into clinical decision support recommendations for patients and providers to facilitate management of patients’ risk for chronic disease using mHealth and other behavioral interventions.

Wu

Rebekah Ryanne Wu

Adjunct Associate Professor in the Department of Medicine

Dr. Wu is an internal medicine physician and health services researcher. Her main research interest is studying the implementation of precision medicine applications to improve clinical care. She is involved in projects currently looking at a patient-facing family history risk assessment tool, MeTree, which provides individualized risk stratification and clinical decision support recommendations to clinicians and patients. In addition she is also involved in a large scale sequencing program in Singapore looking at the intersection of family health history and genomics to better understand how these data elements can complement one another and create more precise risk predictions.  She is a member of NHGRI's IGNITE network as a co-investigator on a multi-site pragmatic clinical trial of the impact of pharmacogenetic testing on management of depression and acute, and chronic pain.  She is the implementation science advisor for the VA's Pharmacogenomic Testing for Veterans (PHASER) program, which is working to complete preemptive PGx testing on up to 250,000 Veterans by 2024.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.