Motor function and safety after allogeneic cord blood and cord tissue-derived mesenchymal stromal cells in cerebral palsy: An open-label, randomized trial.

Abstract

Aim

To evaluate safety and motor function after treatment with allogeneic umbilical cord blood (AlloCB) or umbilical cord tissue-derived mesenchymal stromal cells (hCT-MSC) in children with cerebral palsy (CP).

Method

Ninety-one children (52 males, 39 females; median age 3 years 7 months [range 2-5 years]) with CP due to hypoxic-ischemic encephalopathy, stroke, or periventricular leukomalacia were randomized to three arms: (1) the AlloCB group received 10 × 107 AlloCB total nucleated cells (TNC) per kilogram at baseline (n = 31); (2) the hCT-MSC group received 2 × 106 hCT-MSC at baseline, 3 months, and 6 months (n = 28); (3) the natural history control group received 10 × 107 AlloCB TNC per kilogram at 12 months (n = 31). Motor function was assessed with the Gross Motor Function Measure-66 (GMFM-66) and Peabody Developmental Motor Scale, Second Edition.

Results

Infusions (n = 143) were well tolerated, with eight infusion reactions (three in the AlloCB group, five in hCT-MSC) and no other safety concerns. At 12 months, the mean differences (95% confidence intervals [CI]) between actual and expected changes in GMFM-66 score were AlloCB 5.8 points (3.4-8.2), hCT-MSC 4.3 (2.2-6.4), and natural history 3.1 (1.4-5.0). In exploratory, post hoc analysis, the mean GMFM-66 score (95% CI) of the hCT-MSC group was 1.4 points higher than natural history (-1.1 to 4.0; p = 0.27), and the AlloCB group was 3.3 points higher than natural history (0.59-5.93; p = 0.02) after adjustment for baseline Gross Motor Function Classification System level, GMFM-66 score, and etiology.

Interpretation

High-dose AlloCB is a potential cell therapy for CP and should be further tested in a randomized, blinded, placebo-controlled trial.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1111/dmcn.15325

Publication Info

Sun, Jessica M, Laura E Case, Colleen McLaughlin, Alicia Burgess, Natalie Skergan, Sydney Crane, Joan M Jasien, Mohamad A Mikati, et al. (2022). Motor function and safety after allogeneic cord blood and cord tissue-derived mesenchymal stromal cells in cerebral palsy: An open-label, randomized trial. Developmental medicine and child neurology. 10.1111/dmcn.15325 Retrieved from https://hdl.handle.net/10161/25707.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jessica Muller Sun

Associate Professor of Pediatrics

Colleen A McLaughlin

Clinical Associate in the School of Nursing
Jasien

Joan Mary Jasien

Associate Professor of Pediatrics

Dr. Joan Mary Jasien completed a med-peds residency and neurodevelopmental neurology and became boarded in internal medicine, pediatrics, neurology and is board eligible for neurodevelopment. She is the co-director of the Multidisciplinary Spina Bifida and Cerebral Palsy Related Conditions Clinics and cares for children and adults with neurodevelopmental disabilities at Duke University Medical Center in Durham, NC, USA. Her research focus is on neurological aging in Spina Bifida and other neurodevelopmental disabilities.

Troy

Jesse David Troy

Associate Professor of Biostatistics & Bioinformatics

I am the Associate Director of Graduate Studies for the Master of Biostatistics program. I am also a co-director of the Clinical Research Training Program. My current research is in cancer therapeutics and palliative care at the Duke Cancer Institute.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.