Singular vector distribution of sample covariance matrices
Date
2019-03
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
<jats:title>Abstract</jats:title><jats:p>We consider a class of sample covariance matrices of the form <jats:italic>Q</jats:italic> = <jats:italic>TXX</jats:italic><jats:italic>T</jats:italic>, where <jats:italic>X</jats:italic> = (<jats:italic>x</jats:italic><jats:sub><jats:italic>ij</jats:italic></jats:sub>) is an <jats:italic>M</jats:italic>×<jats:italic>N</jats:italic> rectangular matrix consisting of independent and identically distributed entries, and <jats:italic>T</jats:italic> is a deterministic matrix such that <jats:italic>T</jats:italic>*<jats:italic>T</jats:italic> is diagonal. Assuming that <jats:italic>M</jats:italic> is comparable to <jats:italic>N</jats:italic>, we prove that the distribution of the components of the right singular vectors close to the edge singular values agrees with that of Gaussian ensembles provided the first two moments of <jats:italic>x</jats:italic><jats:sub><jats:italic>ij</jats:italic></jats:sub> coincide with the Gaussian random variables. For the right singular vectors associated with the bulk singular values, the same conclusion holds if the first four moments of <jats:italic>x</jats:italic><jats:sub><jats:italic>ij</jats:italic></jats:sub> match those of the Gaussian random variables. Similar results hold for the left singular vectors if we further assume that <jats:italic>T</jats:italic> is diagonal.</jats:p>
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ding, Xiucai (2019). Singular vector distribution of sample covariance matrices. Advances in Applied Probability, 51(01). pp. 236–267. 10.1017/apr.2019.10 Retrieved from https://hdl.handle.net/10161/19516.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.