Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for glycogen storage disease type III.

Abstract

We investigated the feasibility of using recombinant human acid-α glucosidase (rhGAA, Alglucosidase alfa), an FDA approved therapy for Pompe disease, as a treatment approach for glycogen storage disease type III (GSD III). An in vitro disease model was established by isolating primary myoblasts from skeletal muscle biopsies of patients with GSD IIIa. We demonstrated that rhGAA significantly reduced glycogen levels in the two GSD IIIa patients' muscle cells (by 17% and 48%, respectively) suggesting that rhGAA could be a novel therapy for GSD III. This conclusion needs to be confirmed in other in vivo models.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ymgme.2012.12.002

Publication Info

Sun, Baodong, Keri Fredrickson, Stephanie Austin, Adviye A Tolun, Beth L Thurberg, William E Kraus, Deeksha Bali, Yuan-Tsong Chen, et al. (2013). Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for glycogen storage disease type III. Mol Genet Metab, 108(2). pp. 145–147. 10.1016/j.ymgme.2012.12.002 Retrieved from https://hdl.handle.net/10161/15087.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.

Bali

Deeksha Sarihyan Bali

Professor of Pediatrics

1)Development of new non-invasive laboratory diagnostic methods using enzymology and molecular diagnostic techniques for Glycogen Storage Diseases (GSDs) and Lysosomal Storage Diseases (LSDs) like Pompe, Fabry, Gaucher, MPS - for early diagnosis and treatment modalities. Exploration of new high throughput diagnostic platforms with an idea of implementation into New born screening (NBS)of these diseases.

2)Clinical research studies associated with Pompe disease with a goal to improve the diagnosis, current therapies and patient care, with special emphasis on clinical development of Cross Reactive Immunologic Material (CRIM) diagnostic methods and association with underlying pathogenic GAA mutations and clinical correlations.

3) Clinical research studies involving other common LSDs (Fabry, MPSI,II,IVa and VI, Gaucher, Wolman disease and more) focusing on early diagnosis and new born screening.

4)Understanding the hepatocellular adenoma (HCA) and hepatocellular carcinomas (HCC) transformation in GSD I, using paired samples from resected adenomas and adjoining liver tissue. Experiments use SNP and expression microarray analysis, miRNA and CNV analysis in collaboration with other investigators.

5)Pursuing genotype-phenotype correlations for various clinical phenotypes of GSD IX, in order to better understand clinical heterogeneity. Severe phenotypes of GSD IX resulting in liver cirrhosis and Cardiac involvement are of special interest to us, especially their association with the underlying pathogenic mutations.

6)Research on Pompe/Mannose-6-phosphate receptor (M6PR300) double knock out mice to understand the role of M6PR in rhGAA uptake and glycogen clearance and also beta-agonist like Clenbuterol.

Yuan-Tsong Chen

Professor Emeritus of Pediatrics

Our overall research interests are in translational research. We aim at translating the promise of genomic medicine into clinical reality.

Specific projects at present time include:

1). Identification of novel genes/targets associated with human diseases. This includes susceptibility genes for common multi-factorial diseases and adverse drug reactions. Genetic epidemiology, mouse ENU mutagenesis, bioinformatics and proteomics are some approaches that we use in identification of novel genes associated with the human disease. Genetic markers associated with drug-induced Stevens-Johnson syndrome and other adverse drug reactions have been identified. Prospective studies are in progress to assess the utilization of these markers to prevent the adverse drug reactions. A systematic, genome-wide, phenotype-driven mutagenesis program for gene function studies in the mouse have resulted in the identification of several mouse models of human genetic metabolic diseases. We will continue our research along these lines to identify more novel disease genes/ targets and to increase our understanding of the diseases.

2). Genetics and molecular mechanisms of Stevens-Johnson syndrome. With the identification of HLA-B allele strongly linked to the genetic susceptibility to the drug-induced Stevens-Johnson syndrome, we are investigating how the specific HLA allele mediated the cell toxicity in causing disseminated keratinocyte death.

3). Functional characterization of a novel glucose transporter and its role in diabetes mellitus. We cloned a novel glucose transporter (Glu 10), which is highly expressed in pancreas and liver and is located on a region of a chromosome where a diabetes mellitus type II locus has been mapped. We are currently investigating its role in diabetes by studying mouse models carrying the GLU10 mutations and by direct genetic association study of human patients affected with diabetes.

4). Enzyme and gene therapy and targeting mechanisms of Pompe disease.
Pompe disease is a fatal genetic muscle disorder. As enzyme replacement therapy for Pompe disease moves into clinical reality the fundamental question of how the enzyme targets the heart and skeletal muscle and why some patients respond better than others remain unanswered. We have generated tissue-specific MPR300 knockout mouse model and other animal models to help answer these questions.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.