Enhanced CT simulation using realistic vascular flow dynamics
Date
2024-04-01
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
As medical technologies advance with increasing speed, virtual imaging trials (VITs) are emerging as a crucial tool in the evaluation and optimization of new imaging techniques. Widely used in many VITs is the four-dimensional extended cardiac-torso (XCAT) phantom, a comprehensive computational model that accurately represents human anatomy and physiology. While the XCAT phantom offers a powerful tool for imaging research, it offers only a limited model of blood flow to compartmentalized organs, potentially limiting the realism and clinical applicability of contrast-enhanced scan simulations. This study bridges that gap by combining realistic CT simulation with an accurate model of blood flow dynamics to enable more realistic simulations of contrast-enhanced imaging. To achieve this, a validated one-dimensional blood flow simulator, HARVEY1D, was used to model flow throughout the vessels of the XCAT phantom. DukeSim, a validated CT simulation platform, was then modified to incorporate the resulting flow into its simulations, thus enabling the generaon of simulated CT scans reflective of real-world blood-based contrast-enhanced imaging scenarios. To demonstrate the utility of this pipeline in an initial application to cardiac imaging, three heart models were studied: a non-diseased model, a 50% stenosis model, and an 80% stenosis model. Three seconds of contrast propagation were tracked in each heart model, and CT scans corresponding to two timepoints were simulated. Results demonstrated that the presence of stenosis significantly impacted blood flow, with greater resistance to blood flow leading to altered flow patterns visible in the simulated CT images. This work showcases a pipeline that leverages both computational fluid dynamics and medical imaging simulations to enhance the realism of virtual imaging trials and facilitate the evaluation, optimization, and development of diagnostic tools for contrast-enhanced imaging.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Tanade, Cyrus, Nicholas Felice, Ehsan Samei, Amanda Randles and W Paul Segars (2024). Enhanced CT simulation using realistic vascular flow dynamics. Medical Imaging 2024: Physics of Medical Imaging, 12925. pp. 399–404. 10.1117/12.3006531 Retrieved from https://hdl.handle.net/10161/30512.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
![Randles](https://scholars.duke.edu/profile-images/thumbnail200/0278734.jpg)
Amanda Randles
My research in biomedical simulation and high-performance computing focuses on the development of new computational tools that we use to provide insight into the localization and development of human diseases ranging from atherosclerosis to cancer.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.