Research report: Charcoal type used for hookah smoking influences CO production.

Abstract

A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning.

Department

Description

Provenance

Citation

Scholars@Duke

Gasier

Heath Gasier

Associate Professor in Anesthesiology

I am a physiologist who joined Duke University in 2019 after retiring from military service. My research has focused on understanding how oxidant stress impacts cellular and systems physiology. Initially, I studied in humans how hyperbaric oxygen (HBO2) within the therapeutic range and high altitude influence nitric oxide production, antioxidant defenses, tissue oxygenation and muscle performance. This work sparked my interest in redox biology and led me to train under Dr. Claude A. Piantadosi at Duke University. Here, I began to study in mice and rats the impact of extreme HBO2 on the central nervous system (CNS). The objectives were to identify in rodents the origin and mechanisms of CNS oxygen toxicity, and test targeted pharmacological intervention strategies. It was during this time that I became interested in heme oxygenase 1 (HO-1). During my final military assignment, I continued to work on HBO2 and CNS oxygen toxicity related research (pharmacological intervention) and initiated new studies examining how HO-1 induction influences musculoskeletal health in diet-induced obesity. These studies led to follow-on work aimed at determining the mechanisms of HO-1 induction and mitochondrial dynamic regulation in an in vitro model of diet-induced obesity. In addition, I was involved in research aimed at understanding how antioxidants influence skeletal muscle mitochondrial dynamics in rodents and cells exposed heat stress and extreme high altitude.

Since returning to Duke University, I continue to conduct research focused on understanding how oxidant stress induced by HBO2 and obesity influences mitochondrial dynamic regulation in the brain, lung and skeletal muscle. I am now studying how sarcopenia and gender influence these responses. I am also involved (Co-I) in research testing the efficacy of a home-based high intensity interval training program in COVID-19 critical illness and early parenteral nutrition in abdominal trauma victims. In both of these studies, my efforts will be directed towards measuring inflammation and mitochondrial quality control responses to the interventions, which are linked to HO-1 activation.

Freiberger

John Jacob Freiberger

Adjunct Associate Professor in the Department of Anesthesiology

Dr Freiberger works on the translation of basic science research on reactive oxygen species signaling into clinical practice involving hyperbaric oxygen (HBO). He has performed animal experiments in the use of HBO for ischemic preconditioning and he is currently funded to conduct a randomized controlled trial of the use of HBO for the treatment of bisphosphonate-induced osteonecrosis of the jaw. The mechanisms of action for HBO in the treatment of: diabetic wounds, bony and soft tissue radionecrosis and decompression sickness are also areas of his inquiry. Dr Freiberger also does basic epidemiological research into accidents and injuries associated with diving, high altitude exposure and other adverse conditions associated with extreme environments. Dr. Freiberger directs the fellowship program at the Duke Center for Hyperbaric Medicine and Environmental Physiology.

Moon

Richard Edward Moon

Professor of Anesthesiology

Research interests include the study of cardiorespiratory function in humans during challenging clinical settings including the perioperative period, and exposure to environmental conditions such as diving and high altitude. Studies have included gas exchange during diving, the pathophysiology of high altitude and immersion pulmonary edema, the effect of anesthesia and postoperative analgesia on pulmonary function and monitoring of tissue oxygenation. Ongoing human studies include the effect of respiratory muscle training on chemosensitivity and blood gases during stressful breathing: underwater exercise.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.