Zero-temperature glass transition in two dimensions
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Attention Stats
Abstract
The nature of the glass transition is theoretically understood in the mean-field limit of infinite spatial dimensions, but the problem remains totally open in physical dimensions. Nontrivial finite-dimensional fluctuations are hard to control analytically, and experiments fail to provide conclusive evidence regarding the nature of the glass transition. Here, we use Monte Carlo simulations that fully bypass the glassy slowdown, and access equilibrium states in two-dimensional glass-forming liquids at low enough temperatures to directly probe the transition. We find that the liquid state terminates at a thermodynamic glass transition at zero temperature, which is associated with an entropy crisis and a diverging static correlation length.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Patrick Charbonneau
Patrick Charbonneau is Professor of Physics at Duke University. His research in soft matter and statistical physics uses theory and computer simulations to study glassy materials and frustrated systems. He also contributes to the history of science, curating projects on quantum and statistical physics as well as food history.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.
