Jamming, relaxation, and memory in a minimally structured glass former.
Date
2023-11
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Structural glasses form through various out-of-equilibrium processes, including temperature quenches, rapid compression (crunches), and shear. Although each of these processes should be formally understandable within the recently formulated dynamical mean-field theory (DMFT) of glasses, the numerical tools needed to solve the DMFT equations up to the relevant physical regime do not yet exist. In this context, numerical simulations of minimally structured (and therefore mean-field-like) model glass formers can aid the search for and understanding of such solutions, thanks to their ability to disentangle structural from dimensional effects. We study here the infinite-range Mari-Kurchan model under simple out-of-equilibrium processes, and we compare results with the random Lorentz gas [J. Phys. A 55, 334001 (2022)10.1088/1751-8121/ac7f06]. Because both models are mean-field-like and formally equivalent in the limit of infinite spatial dimensions, robust features are expected to appear in the DMFT as well. The comparison provides insight into temperature and density onsets, memory, as well as anomalous relaxation. This work also further enriches the algorithmic understanding of the jamming density.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Charbonneau, Patrick, and Peter K Morse (2023). Jamming, relaxation, and memory in a minimally structured glass former. Physical review. E, 108(5-1). p. 054102. 10.1103/physreve.108.054102 Retrieved from https://hdl.handle.net/10161/29694.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Patrick Charbonneau
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.