Localized density matrix minimization and linear-scaling algorithms
Date
2016-06-15
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
© 2016 Elsevier Inc.We propose a convex variational approach to compute localized density matrices for both zero temperature and finite temperature cases, by adding an entry-wise ℓ1 regularization to the free energy of the quantum system. Based on the fact that the density matrix decays exponentially away from the diagonal for insulating systems or systems at finite temperature, the proposed ℓ1 regularized variational method provides an effective way to approximate the original quantum system. We provide theoretical analysis of the approximation behavior and also design convergence guaranteed numerical algorithms based on Bregman iteration. More importantly, the ℓ1 regularized system naturally leads to localized density matrices with banded structure, which enables us to develop approximating algorithms to find the localized density matrices with computation cost linearly dependent on the problem size.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Lai, R, and J Lu (2016). Localized density matrix minimization and linear-scaling algorithms. Journal of Computational Physics, 315. pp. 194–210. 10.1016/j.jcp.2016.02.076 Retrieved from https://hdl.handle.net/10161/14106.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Jianfeng Lu
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.
More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.