Hodge Theory of the Turaev Cobracket and the Kashiwara--Vergne Problem

Loading...
Thumbnail Image

Date

2021-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

31
views
21
downloads

Citation Stats

Abstract

In this paper we show that, after completing in the $I$-adic topology, the Turaev cobracket on the vector space freely generated by the closed geodesics on a smooth, complex algebraic curve $X$ with an algebraic framing is a morphism of mixed Hodge structure. We combine this with results of a previous paper (arXiv:1710.06053) on the Goldman bracket to construct torsors of solutions of the Kashiwara--Vergne problem in all genera. The solutions so constructed form a torsor under a prounipotent group that depends only on the topology of the framed surface. We give a partial presentation of these groups. Along the way, we give a homological description of the Turaev cobracket.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.4171/JEMS/1088

Publication Info

Hain, Richard (2021). Hodge Theory of the Turaev Cobracket and the Kashiwara--Vergne Problem. Journal of the European Mathematical Society, 23(12). pp. 3889–3933. 10.4171/JEMS/1088 Retrieved from https://hdl.handle.net/10161/24131.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hain

Richard Hain

Professor Emeritus of Mathematics

I am a topologist whose main interests include the study of the topology of complex algebraic varieties (i.e. spaces that are the set of common zeros of a finite number of complex polynomials). What fascinates me is the interaction between the topology, geometry and arithmetic of varieties defined over subfields of the complex numbers, particularly those defined over number fields. My main tools include differential forms, Hodge theory and Galois theory, in addition to the more traditional tools used by topologists. Topics of current interest to me include:

  • the topology and related geometry of various moduli spaces, such as the moduli spaces of smooth curves and moduli spaces of principally polarized abelian varieties;
  • the study of fundamental groups of algebraic varieties, particularly of moduli spaces whose fundamental groups are mapping class groups;
  • the study of various enriched structures (Hodge structures, Galois actions, and periods) of fundamental groups of algebraic varieties;
  • polylogarithms, mixed zeta values, and their elliptic generalizations, which occur as periods of fundamental groups of moduli spaces of curves. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.