Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem
dc.contributor.author | Cherkis, Sergey A | |
dc.contributor.author | Larrain-Hubach, Andres | |
dc.contributor.author | Stern, Mark | |
dc.date.accessioned | 2021-12-13T20:13:11Z | |
dc.date.available | 2021-12-13T20:13:11Z | |
dc.date.issued | 2019-12-06 | |
dc.date.updated | 2021-12-13T20:13:10Z | |
dc.description.abstract | We study finite action anti-self-dual Yang-Mills connections on the multi-Taub-NUT space. We establish the curvature and the harmonic spinors decay rates and compute the index of the associated Dirac operator. This is the first in a series of papers proving the completeness of the bow construction of instantons on multi-Taub-NUT spaces and exploring it in detail. | |
dc.identifier.issn | 0022-040X | |
dc.identifier.issn | 1945-743X | |
dc.identifier.uri | ||
dc.publisher | International Press | |
dc.relation.ispartof | Journal of Differential Geometry | |
dc.relation.isversionof | 10.4310/jdg/1631124166 | |
dc.subject | math.DG | |
dc.subject | math.DG | |
dc.subject | hep-th | |
dc.title | Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem | |
dc.type | Journal article | |
duke.contributor.orcid | Stern, Mark|0000-0002-6550-5515 | |
pubs.begin-page | 1 | |
pubs.end-page | 72 | |
pubs.issue | 1 | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Duke | |
pubs.publication-status | Accepted | |
pubs.volume | 119 |