Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem

dc.contributor.author

Cherkis, Sergey A

dc.contributor.author

Larrain-Hubach, Andres

dc.contributor.author

Stern, Mark

dc.date.accessioned

2021-12-13T20:13:11Z

dc.date.available

2021-12-13T20:13:11Z

dc.date.issued

2019-12-06

dc.date.updated

2021-12-13T20:13:10Z

dc.description.abstract

We study finite action anti-self-dual Yang-Mills connections on the multi-Taub-NUT space. We establish the curvature and the harmonic spinors decay rates and compute the index of the associated Dirac operator. This is the first in a series of papers proving the completeness of the bow construction of instantons on multi-Taub-NUT spaces and exploring it in detail.

dc.identifier.issn

0022-040X

dc.identifier.issn

1945-743X

dc.identifier.uri

https://hdl.handle.net/10161/24071

dc.publisher

International Press

dc.relation.ispartof

Journal of Differential Geometry

dc.relation.isversionof

10.4310/jdg/1631124166

dc.subject

math.DG

dc.subject

math.DG

dc.subject

hep-th

dc.title

Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem

dc.type

Journal article

duke.contributor.orcid

Stern, Mark|0000-0002-6550-5515

pubs.begin-page

1

pubs.end-page

72

pubs.issue

1

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

pubs.publication-status

Accepted

pubs.volume

119

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1608.00018v2.pdf
Size:
721.19 KB
Format:
Adobe Portable Document Format