Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance.

dc.contributor.author

Hodgkins, Suzanne B

dc.contributor.author

Richardson, Curtis J

dc.contributor.author

Dommain, René

dc.contributor.author

Wang, Hongjun

dc.contributor.author

Glaser, Paul H

dc.contributor.author

Verbeke, Brittany

dc.contributor.author

Winkler, B Rose

dc.contributor.author

Cobb, Alexander R

dc.contributor.author

Rich, Virginia I

dc.contributor.author

Missilmani, Malak

dc.contributor.author

Flanagan, Neal

dc.contributor.author

Ho, Mengchi

dc.contributor.author

Hoyt, Alison M

dc.contributor.author

Harvey, Charles F

dc.contributor.author

Vining, S Rose

dc.contributor.author

Hough, Moira A

dc.contributor.author

Moore, Tim R

dc.contributor.author

Richard, Pierre JH

dc.contributor.author

De La Cruz, Florentino B

dc.contributor.author

Toufaily, Joumana

dc.contributor.author

Hamdan, Rasha

dc.contributor.author

Cooper, William T

dc.contributor.author

Chanton, Jeffrey P

dc.date.accessioned

2018-11-09T21:30:27Z

dc.date.available

2018-11-09T21:30:27Z

dc.date.issued

2018-09-07

dc.date.updated

2018-11-09T21:30:26Z

dc.description.abstract

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

dc.identifier.issn

2041-1723

dc.identifier.issn

2041-1723

dc.identifier.uri

https://hdl.handle.net/10161/17645

dc.language

eng

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

Nature communications

dc.relation.isversionof

10.1038/s41467-018-06050-2

dc.subject

Science & Technology

dc.subject

Multidisciplinary Sciences

dc.subject

Science & Technology - Other Topics

dc.subject

DISSOLVED ORGANIC-MATTER

dc.subject

SUB-ARCTIC PEATLAND

dc.subject

GREENHOUSE-GAS FLUXES

dc.subject

PERMAFROST THAW

dc.subject

NORTHERN MINNESOTA

dc.subject

FTIR SPECTROSCOPY

dc.subject

LIGNIN CONTENT

dc.subject

BROWN-ROT

dc.subject

DECOMPOSITION

dc.subject

CHEMISTRY

dc.title

Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance.

dc.type

Journal article

duke.contributor.orcid

Wang, Hongjun|0000-0002-2105-2745

duke.contributor.orcid

Ho, Mengchi|0000-0001-6876-9666

pubs.begin-page

3640

pubs.issue

1

pubs.organisational-group

Nicholas School of the Environment

pubs.organisational-group

Duke

pubs.organisational-group

Environmental Sciences and Policy

pubs.organisational-group

Staff

pubs.publication-status

Published

pubs.volume

9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-018-06050-2.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format