<i>ATP1A3</i>-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia.

Abstract

Background Pathogenic variation in the ATP1A3-encoded sodium-potassium ATPase, ATP1A3, is responsible for alternating hemiplegia of childhood (AHC). Although these patients experience a high rate of sudden unexpected death in epilepsy, the pathophysiologic basis for this risk remains unknown. The objective was to determine the role of ATP1A3 genetic variants on cardiac outcomes as determined by QT and corrected QT (QTc) measurements. Methods and Results We analyzed 12-lead ECG recordings from 62 patients (male subjects=31, female subjects=31) referred for AHC evaluation. Patients were grouped according to AHC presentation (typical versus atypical), ATP1A3 variant status (positive versus negative), and ATP1A3 variant (D801N versus other variants). Manual remeasurements of QT intervals and QTc calculations were performed by 2 pediatric electrophysiologists. QTc measurements were significantly shorter in patients with positive ATP1A3 variant status (P<0.001) than in patients with genotype-negative status, and significantly shorter in patients with the ATP1A3-D801N variant than patients with other variants (P<0.001). The mean QTc for ATP1A3-D801N was 344.9 milliseconds, which varied little with age, and remained <370 milliseconds throughout adulthood. ATP1A3 genotype status was significantly associated with shortened QTc by multivariant regression analysis. Two patients with the ATP1A3-D801N variant experienced ventricular fibrillation, resulting in death in 1 patient. Rare variants in ATP1A3 were identified in a large cohort of genotype-negative patients referred for arrhythmia and sudden unexplained death. Conclusions Patients with AHC who carry the ATP1A3-D801N variant have significantly shorter QTc intervals and an increased likelihood of experiencing bradycardia associated with life-threatening arrhythmias. ATP1A3 variants may represent an independent cause of sudden unexplained death. Patients with AHC should be evaluated to identify risk of sudden death.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1161/jaha.120.019887

Publication Info

Moya-Mendez, Mary E, Chiagoziem Ogbonna, Jordan E Ezekian, Michael B Rosamilia, Lyndsey Prange, Caridad de la Uz, Jeffrey J Kim, Taylor Howard, et al. (2021). ATP1A3-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia. Journal of the American Heart Association, 10(17). p. e019887. 10.1161/jaha.120.019887 Retrieved from https://hdl.handle.net/10161/25069.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Emily Funk

Assistant Clinical Professor in the School of Nursing
Carboni

Michael Paul Carboni

Associate Professor of Pediatrics

Transplant cardiology
Heart failure and cardiomyopathy in children
Arrhythmias in children and congenital heart disease
Inherited arrhythmias/channelopathies (e.g., Long QT syndrome, Brugada Syndrome) 
Rhythm device management & implantation in children and congenital heart disease

Idriss

Salim Farouk Idriss

Professor of Pediatrics

I am primarily interested in the effects of age and development on cardiac electrical stability. The electrical properties of the myocardium continue to develop and mature after birth. These changes may affect susceptibility to malignant arrhythmias at different ages. I strive to prevent sudden cardiac death in the young (SCDY) through primary prevention (screening) and secondary prevention (CPR and AED use) locally, state-wide, and nationally through academic, public, industry, and government collaboration.

Mikati

Mohamad Abdul Mikati

Wilburt C. Davison Distinguished Professor

Mohamad A.  Mikati M.D., is the Wilburt C. Davison Professor of Pediatrics, Professor of Neurobiology, and Chief of the Division of Pediatric Neurology. Dr. Mikati’s clinical research has centered on characterization and therapy of pediatric epilepsy and neurology syndromes, describing several new pediatric neurological entities with two carrying his name (POSSUM syndromes # 3708 and 4468), developing novel therapeutic strategies for epilepsy and related disorders particularly Alternating Hemiplegia of Childhood, and applying cutting edge genetic and Magnetic Resonance Imaging techniques to drug resistant pediatric epilepsy.  In the laboratory he has elucidated mechanisms of seizure related neuronal injury, particularly those related to the ceramide pathway, and demonstrated neuroprotective effects of several agents including erythropoietin. Most recently he has concentrated his laboratory research on the pathophysiology of ATP1A3 dysfunction in the brain as model for epilepsy and of Alternating Hemiplegia of Childhood. He has more than 290 peer reviewed publications, 400 abstracts 41 chapters one book and two booklets. He also has more than 10,497 citations in the literature with an h-index of 58 and an i-10index of 190. Dr. Mikati has written chapters on epilepsy and related disorders in the major textbooks of Pediatrics and Pediatric Neurology including Swaiman’s Pediatric Neurology and Nelson’s Pediatrics. Before joining Duke in 2008 he had completed his M.D. and Pediatric training at the American University of Beirut, his Neurology at the Massachusetts General Hospital, his Neurophysiology at Boston Children’s Hospital and had been on the Faculty at Harvard as Director of Research in the Epilepsy Program at Boston Children’s Hospital and then as Professor and Chairman, Department of Pediatrics, Founder and Director of the Adult and Pediatric Epilepsy Program at the American University of Beirut. Dr. Mikati has had several international leadership roles including being President of the Union of the Middle Eastern and Mediterranean Pediatric Societies, on the Standing Committee of the International Pediatric Association (IPA), Chair of the Strategic Advisory Group on Early Childhood Development of the IPA, Officer of the International Child Neurology Association, Consultant to UNICEF, WHO, and the American Board of Pediatrics. He was selected to organize and chair the American Epilepsy Society's Merritt-Putnam Symposium and was one of only two Pediatric Neurologists, initially chosen worldwide, on the WHO advisory committee for the International Classification of Disease. He has received several national and international honors including, among others, Merritt Putnam American Epilepsy Society Fellowship Award, Harvard Community Health Plan Peer recognition Award, Debs Research Award, Hamdan Award for contributions to Medicine, Hans Zellweger Award for contributions to Pediatric Neurology, Patient Choice Award and the Michael Frank Award for research and lifetime contributions to the field of Pediatric Neurology.

Landstrom

Andrew Paul Landstrom

Associate Professor of Pediatrics

Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart.  He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome.  He also specializes in the evaluation of children following a cardiac arrest or after the sudden and unexplained death of a family member.  He has expertise in cardiovascular genetics and uses it to identify individuals in a family who may be at risk of a disease, even if all clinical testing is negative.  As a scientist, he is trained in genetics and cell biology.  He runs a research lab exploring the genetic and molecular causes of arrhythmias, sudden unexplained death syndromes, and heart muscle disease (cardiomyopathies).  He utilizes patient-derived induced pluripotent stem cells and genetic mouse models to identify the mechanisms of cardiovascular genetic disease with the goal of developing novel therapies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.