Th17 Cell Pathogenicity Promoted by Integrin α3 During Autoimmune Neuroinflammation

Limited Access
This item is unavailable until:
2025-01-27

Date

2022

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

40
views
0
downloads

Abstract

Autoimmune diseases are caused by dysregulated immune responses against self. Multiple sclerosis (MS) is one such autoimmune disease in which the central nervous system (CNS) is affected by chronic inflammation, and Th17 cells are critical mediators of disease pathogenesis. While targeting leukocyte trafficking is effective in treating autoimmunity, there are currently no therapeutic interventions that specifically block encephalitogenic Th17 cell migration. Here, we report integrin α3 as a Th17 cell-selective determinant of pathogenicity in experimental autoimmune encephalomyelitis, a mouse model of MS. CNS-infiltrating Th17 cells express high integrin α3, the expression of which is induced by transcription factors that are required for Th17 cell specification. The deletion integrin α3 in CD4+ T cells or IL-17A-fate-mapped cells attenuated disease severity. Mechanistically, integrin α3 promoted the polarization, proliferation, and transmigration of Th17 cells, and integrin α3-deficiency enhanced the retention of CD4+ T cells in the perivascular space of the blood-brain barrier. Notably, differential RNA-seq expression analysis revealed that Th17 cells continuously depend on integrin α3 to maintain Th17 cell identity and effector function. The requirement of integrin α3 in Th17 cell pathogenicity suggests integrin α3 as a therapeutic target for MS treatment.

Department

Description

Provenance

Citation

Citation

Park, Eunchong (2022). Th17 Cell Pathogenicity Promoted by Integrin α3 During Autoimmune Neuroinflammation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/26839.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.