Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks

Loading...
Thumbnail Image

Date

2017-08-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

150
views
174
downloads

Abstract

Networks of randomly connected neurons are among the most popular models in theoretical neuroscience. The connectivity between neurons in the cortex is however not fully random, the simplest and most prominent deviation from randomness found in experimental data being the overrepresentation of bidirectional connections among pyramidal cells. Using numerical and analytical methods, we investigated the effects of partially symmetric connectivity on dynamics in networks of rate units. We considered the two dynamical regimes exhibited by random neural networks: the weak-coupling regime, where the firing activity decays to a single fixed point unless the network is stimulated, and the strong-coupling or chaotic regime, characterized by internally generated fluctuating firing rates. In the weak-coupling regime, we computed analytically for an arbitrary degree of symmetry the auto-correlation of network activity in presence of external noise. In the chaotic regime, we performed simulations to determine the timescale of the intrinsic fluctuations. In both cases, symmetry increases the characteristic asymptotic decay time of the autocorrelation function and therefore slows down the dynamics in the network.

Department

Description

Provenance

Citation

Scholars@Duke

Brunel

Nicolas Brunel

Duke School of Medicine Distinguished Professor in Neuroscience

We use theoretical models of brain systems to investigate how they process and learn information from their inputs. Our current work focuses on the mechanisms of learning and memory, from the synapse to the network level, in collaboration with various experimental groups. Using methods from
statistical physics, we have shown recently that the synaptic
connectivity of a network that maximizes storage capacity reproduces
two key experimentally observed features: low connection probability
and strong overrepresentation of bidirectionnally connected pairs of
neurons. We have also inferred `synaptic plasticity rules' (a
mathematical description of how synaptic strength depends on the
activity of pre and post-synaptic neurons) from data, and shown that
networks endowed with a plasticity rule inferred from data have a
storage capacity that is close to the optimal bound.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.