Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing.
Date
2023-07
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Pan, Christopher C, Raquel Maeso-Díaz, Tylor R Lewis, Kun Xiang, Lianmei Tan, Yaosi Liang, Liuyang Wang, Fengrui Yang, et al. (2023). Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell research, 33(7). pp. 516–532. 10.1038/s41422-023-00820-4 Retrieved from https://hdl.handle.net/10161/29453.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
![Wang](https://scholars.duke.edu/profile-images/thumbnail200/0570075.jpg)
Liuyang Wang
Leveraging bioinformatics and big data to understand the intricacies of human diseases.
My overall research goals are centered on unraveling the molecular mechanism underpinning human disease susceptibility and harnessing these findings to innovative diagnostic and therapeutic strategies. I have adopted a multidisciplinary approach that integrates genomics, transcriptomics, and computational biology. Leveraging high-throughput cellular screening and genome-wide association study (GWAS), we have successfully identified hundreds of genomic loci associated with 8 different pathogens (Wang et al. 2018). Utilizing single-cell RNA-seq, we developed scHi-HOST to rapidly identify host genes associated with the influenza virus (Schott and Wang, et al. 2022). I also have developed several novel statistical tools, CPAG and iCPAGdb, that estimate genetic associations among human diseases and traits (Wang et al. 2015, 2021). Combining experimental and computational approaches, I expect to gain a deeper understanding of the genetic architecture of human susceptibility to infection and inflammatory disorders.
![Du](https://scholars.duke.edu/profile-images/thumbnail200/0792323.jpg)
Kuo Du
![Diehl](https://scholars.duke.edu/profile-images/thumbnail200/0314922.jpg)
Anna Mae Diehl
Our lab has a long standing interest in liver injury and repair. To learn more about the mechanisms that regulate this process, we study cultured cells, animal models of acute and chronic liver damage and samples from patients with various types of liver disease. Our group also conducts clinical trials in patients with chronic liver disease. We are particularly interested in fatty liver diseases, such as alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD).
Research by our group has advanced understanding in two main areas: 1) immune system regulation of liver injury and regeneration and 2)the role of fetal morphogens, such as the hedgehog pathway, in regulating fibrotic responses to liver damage. Our basic research programs have been enjoyed continuous NIH support since 1989. We welcome students, post-doctoral fellows and visiting scientists who have interests in this research area to contact us about training opportunities and potential collaborations.
Since 2001 we have also been an active participant in the NIDDK-funded Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN), a national consortium comprised of 8 university medical centers selected to generate a national registry for patients with NAFLD and to conduct multicenter treatment trials for this disorder. We are actively recruiting patients for this program, as well as a number of other industry-supported NAFLD studies.
![Wang](https://scholars.duke.edu/profile-images/thumbnail200/0117338.jpg)
Xiao-Fan Wang
The current research in the Wang laboratory mainly focuses on the elucidation of molecular nature and signaling mechanisms associated with the initiation of cellular senescence. In addition, we continue to study changes in tumor microenvironment that promotes tumor progression and metastasis, particularly how tumor cells interact with the immune system. Ultimately, we hope that our studies in these areas to lead to the development of novel therapeutics for the treatment of various types of human cancer.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.