Magnetic resonance microscopy.
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Badea, Alexandra, and G Allan Johnson (2012). Magnetic resonance microscopy. Anal Cell Pathol (Amst), 35(4). pp. 205–227. 10.3233/ACP-2011-0050 Retrieved from https://hdl.handle.net/10161/11678.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Alexandra Badea
I have a joint appointment in Radiology and Neurology and my research focuses on neurological conditions like Alzheimer’s disease. I work on imaging and analysis to provide a comprehensive characterization of the brain. MRI is particularly suitable for brain imaging, and diffusion tensor imaging is an important tool for studying brain microstructure, and the connectivity amongst gray matter regions.
I am interested in image segmentation, morphometry and shape analysis, as well as in integrating information from MRI with genetics, and behavior. Our approaches target: 1) phenotyping the neuroanatomy using imaging; 2) uncovering the link between structural and functional changes, the genetic bases, and environmental factors. I am interested in generating methods and tools for comprehensive phenotyping.
We use high-performance cluster computing to accelerate our image analysis. We use compressed sensing image reconstruction, and process large image arrays using deformable registration, perform segmentation based on multiple image contrasts including diffusion tensor imaging, as well as voxel, and graph analysis for connectomics.
At BIAC my efforts focus on developing multivariate biomarkers and identifying vulnerable networks based on genetic risk for Alzheimer's disease.
My enthusiasm comes from the possibility to extend from single to integrative multivariate and network based analyses to obtain a comprehensive picture of normal development and aging, stages of disease, and the effects of treatments. I am working on multivariate image analysis and predictive modeling approaches to help better understand early biomarkers for human disease indirectly through mouse models, as well as directly in human studies.
I am dedicated to supporting an increase in female presence in STEM fields, and love working with students. The Bass Connections teams involve undergraduate students in research, providing them the opportunity to do independent research studies and get involved with the community. These students have for example takes classes such as:
BME 394: Projects in Biomedical Engineering (GE)
BME 493: Projects in Biomedical Engineering (GE)
ECE 899: Special Readings in Electrical Engineering
NEUROSCI 493: Research Independent Study 1
G. Allan Johnson
Dr. Johnson is the Charles E. Putman University Professor of Radiology, Professor of Physics, and Biomedical Engineering, and Director of the Duke Center for In Vivo Microscopy (CIVM). The CIVM is an NIH/NIBIB national Biomedical Technology Resource Center with a mission to develop novel technologies for preclinical imaging (basic sciences) and apply the technologies to critical biomedical questions. Dr. Johnson was one of the first researchers to bring Paul Lauterbur's vision of magnetic resonance (MR) microscopy to practice as described in his paper, "Nuclear magnetic resonance imaging at microscopic resolution" (J Magn Reson 68:129-137, 1986). Dr. Johnson is involved in both the engineering physics required to extend the resolution of MR imaging and in a broad range of applications in the basic sciences.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.