Report of a young girl with MYH9 mutation and review of the literature.


MYH9 mutations cause the inherited macro-thrombocytopenic syndromes of May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome, and Epstein syndrome, collectively referred to as MYH9-related disease. We present the case of a girl with MYH9-related disease whose diagnosis was facilitated by platelet electron microscopy and MYH9 sequencing. We discuss our patient's clinical presentation, now with 12 years of follow-up. We also discuss management and her possible prognosis given her specific MYH9 mutation.





Published Version (Please cite this version)


Publication Info

Landi, Daniel, Evelyn Lockhart, Sara E Miller, Michael Datto, Catherine Rehder, Angela Kanaly and Courtney D Thornburg (2012). Report of a young girl with MYH9 mutation and review of the literature. Journal of pediatric hematology/oncology, 34(7). pp. 538–540. 10.1097/mph.0b013e3182678fc9 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Daniel Bryce Landi

Assistant Professor of Pediatrics

Sara Elizabeth Miller

Professor in Pathology

Our laboratory specializes in two areas, infectious diseases, particularlyviral diseases, and ultrastructure-function relationships. Electronmicroscopy (EM) is the focus of the investigative techniques and includes preparative methods such as negative staining, thin sectioning, ultracryomicrotomy and immunolabeling of acrylic and frozen sections.

We are especially interested in methods for diagnosing viral illnesses by EM, and are involved in developing better, more sensitive and faster,methods for detection. While molecular techniques for detecting organisms
are very sensitive, they all require specific reagents, and if the correct probe is not determined a priori, the test is negative. EM offers an open view of any viruses or unsuspected organisms that may be present. We make use of concentration and enhancement methods to increase the chances of
detecting viral agents in fluid specimens. Additionally, we have described a method for selecting small focal areas of pathology in tissue by confocal microscopy to be embedded and examined by EM, increasing the
chances of visualizing organisms. Infectious diseases are the leading cause of death worldwide and the third leading cause in the US. With advanced therapies for cancer patients and many patients living longer
with their disease, a whole new population of infectious disease-susceptible patients has emerged. Chemotherapy, radiation, and bone marrow transplantation are permitting longer survival, but cause
immunosuppression and consequently, strange, unusual diseases, such as polyomavirus infections, sometimes in uncommon body sites. We work closely with physicians to detect and monitor the clearance of
polyomavirus infections in bone marrow and kidney transplant patients. We detect food-borne outbreaks on campus, and we test numerous specimens from patients with infectious diseases. We also serve on the Duke Biodefense Team due to our capability to detect and differentiate poxvirus infections
from those of herpesvirus infections rapidly (within minutes).

Several research collaborations are underway. We have worked with Dr. David Pickup on a structural protein that directs intracellular virus particle movement and maturation. A project with Drs. William Parker and
Randal Bollinger, involves looking at microbes and mucous membrane immunity. It concentrates on biofilms in appendix and lower intestine. We are collaborating with Dr. Meta Kuehn on immunostaining bacterial
vesicles possibly containing endotoxin that have been internalized by
human cells. A different project with Drs. Celia LeBranche and Brian Cullen has examined morphological differences in various retrovirus outer membranes. With Dr. Barton Haynes' laboratory, we determined that cells transfected with single retroviral genes produced subviral particles. With Dr. Michael Hauser's lab, we are examining the difference of myotilin concentration in normal muscle and muscle from muscular dystrophy patients. We worked with a postdoctoral student in the laboratory of Dr. Shirish Shinolokar on staining and examining actin and actin-bundling protein by EM. Finally, we train and assist graduate students, post doctoral students and medical residents how to use electron microscopic techniques in their own studies.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.