From Partition Identities to a Combinatorial Approach to Explicit Satake Inversion
dc.contributor.author | Hahn, H | |
dc.contributor.author | Huh, J | |
dc.contributor.author | Lim, E | |
dc.contributor.author | Sohn, J | |
dc.date.accessioned | 2021-03-18T05:06:09Z | |
dc.date.available | 2021-03-18T05:06:09Z | |
dc.date.issued | 2018-09-01 | |
dc.date.updated | 2021-03-18T05:06:06Z | |
dc.description.abstract | © 2018, Springer International Publishing AG, part of Springer Nature. In this paper, we provide combinatorial proofs for certain partition identities which arise naturally in the context of Langlands’ beyond endoscopy proposal. These partition identities motivate an explicit plethysm expansion of Sym jSym kV for GL 2 in the case k = 3. We compute the plethysm explicitly for the cases k = 3, 4. Moreover, we use these expansions to explicitly compute the basic function attached to the symmetric power L-function of GL 2 for these two cases. | |
dc.identifier.issn | 0218-0006 | |
dc.identifier.issn | 0219-3094 | |
dc.identifier.uri | ||
dc.language | en | |
dc.publisher | Springer Verlag | |
dc.relation.ispartof | Annals of Combinatorics | |
dc.relation.isversionof | 10.1007/s00026-018-0391-3 | |
dc.subject | Science & Technology | |
dc.subject | Physical Sciences | |
dc.subject | Mathematics, Applied | |
dc.subject | Mathematics | |
dc.subject | partition identities | |
dc.subject | multiplicities in the plethysm expansion | |
dc.subject | explicit Satake inversions | |
dc.subject | REPRESENTATIONS | |
dc.title | From Partition Identities to a Combinatorial Approach to Explicit Satake Inversion | |
dc.type | Journal article | |
duke.contributor.orcid | Hahn, H|0000-0002-3818-2562 | |
pubs.begin-page | 543 | |
pubs.end-page | 562 | |
pubs.issue | 3 | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Duke | |
pubs.publication-status | Published | |
pubs.volume | 22 |
Files
Original bundle
- Name:
- Hahn_AnnComb_final.pdf
- Size:
- 320.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version