From Partition Identities to a Combinatorial Approach to Explicit Satake Inversion

dc.contributor.author

Hahn, H

dc.contributor.author

Huh, J

dc.contributor.author

Lim, E

dc.contributor.author

Sohn, J

dc.date.accessioned

2021-03-18T05:06:09Z

dc.date.available

2021-03-18T05:06:09Z

dc.date.issued

2018-09-01

dc.date.updated

2021-03-18T05:06:06Z

dc.description.abstract

© 2018, Springer International Publishing AG, part of Springer Nature. In this paper, we provide combinatorial proofs for certain partition identities which arise naturally in the context of Langlands’ beyond endoscopy proposal. These partition identities motivate an explicit plethysm expansion of Sym jSym kV for GL 2 in the case k = 3. We compute the plethysm explicitly for the cases k = 3, 4. Moreover, we use these expansions to explicitly compute the basic function attached to the symmetric power L-function of GL 2 for these two cases.

dc.identifier.issn

0218-0006

dc.identifier.issn

0219-3094

dc.identifier.uri

https://hdl.handle.net/10161/22446

dc.language

en

dc.publisher

Springer Verlag

dc.relation.ispartof

Annals of Combinatorics

dc.relation.isversionof

10.1007/s00026-018-0391-3

dc.subject

Science & Technology

dc.subject

Physical Sciences

dc.subject

Mathematics, Applied

dc.subject

Mathematics

dc.subject

partition identities

dc.subject

multiplicities in the plethysm expansion

dc.subject

explicit Satake inversions

dc.subject

REPRESENTATIONS

dc.title

From Partition Identities to a Combinatorial Approach to Explicit Satake Inversion

dc.type

Journal article

duke.contributor.orcid

Hahn, H|0000-0002-3818-2562

pubs.begin-page

543

pubs.end-page

562

pubs.issue

3

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

pubs.publication-status

Published

pubs.volume

22

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hahn_AnnComb_final.pdf
Size:
320.81 KB
Format:
Adobe Portable Document Format
Description:
Published version