A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease.


Steroid-refractory acute graft-versus-host disease (SR-aGVHD) following hematopoietic cell transplantation (HSCT) is associated with poor clinical outcomes. Currently, there are no safe and effective therapies approved for use in the pediatric population under the age of 12 years. Accordingly, there is an urgent need for new treatments that are safe, well tolerated, and effective in managing this debilitating and potentially fatal complication of HSCT. In early phase clinical trials, mesenchymal stromal cells (MSCs) have demonstrated efficacy in the treatment of acute GVHD (aGVHD) in pediatric patients. We now report the results of a phase 3, prospective, single-arm, multicenter study (NCT02336230) in 54 children with primary SR-aGVHD who were naive to other immunosuppressant therapies for aGVHD treated with MSC product (remestemcel-L) dosed at 2 × 106 cells/kg twice weekly for 4 weeks. Remestemcel-L therapy significantly improved day 28 overall response rate (OR) compared with the prespecified control OR value of 45% (70.4% versus 45%, P = .0003). The statistically significant OR (70.4%) was sustained through day 100, including an increase in complete response from 29.6% at day 28 to 44.4% at day 100. Overall survival was 74.1% at day 100 and 68.5% at day 180. Overall response in all participants at day 28 was highly predictive of improved survival through 180 days, and survival was significantly greater in day 28 responders compared with nonresponders through day 100 (86.8% versus 47.1% for responders and nonresponders, respectively, P = .0001) and through day 180 (78.9% versus 43.8%, P = .003). Remestemcel-L was well tolerated with no identified infusion-related toxicities or other safety concerns. This study provides robust, prospective evidence of the safety, tolerability, and efficacy of remestemcel-L as first-line therapy after initial steroid failure in pediatric SR-aGVHD.





Published Version (Please cite this version)


Publication Info

Kurtzberg, Joanne, Hisham Abdel-Azim, Paul Carpenter, Sonali Chaudhury, Biljana Horn, Kris Mahadeo, Eneida Nemecek, Steven Neudorf, et al. (2020). A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 26(5). pp. 845–854. 10.1016/j.bbmt.2020.01.018 Retrieved from https://hdl.handle.net/10161/24567.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.


Kris Mahadeo

Professor of Pediatrics

Vinod K. Prasad

Consulting Professor in the Department of Pediatrics

1. Expanding the role of umbilical cord blood transplants for inherited metabolic disorders.
2. Impact of histocompatibility and other determinants of alloreactivity on clinical outcomes of unrelated cord blood transplants.
3. Studies to analyse the impact of Killer Immunoglobulin receptors on the outcomes of hematopoietic stem cell transplantation utilizing haploidentical, CD34 selected, familial grafts.
4. Propective longitudinal study of serial monitoring of adenovirus in allogenic transpants(SMAART)patients.
5. Use of mesenchymal stem cells for the treatment of GVHD

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.