Chapter 7: grading a body of evidence on diagnostic tests.

Loading...
Thumbnail Image

Date

2012-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

41
views
26
downloads

Citation Stats

Abstract

Introduction

Grading the strength of a body of diagnostic test evidence involves challenges over and above those related to grading the evidence from health care intervention studies. This chapter identifies challenges and outlines principles for grading the body of evidence related to diagnostic test performance.

Challenges

Diagnostic test evidence is challenging to grade because standard tools for grading evidence were designed for questions about treatment rather than diagnostic testing; and the clinical usefulness of a diagnostic test depends on multiple links in a chain of evidence connecting the performance of a test to changes in clinical outcomes.

Principles

Reviewers grading the strength of a body of evidence on diagnostic tests should consider the principle domains of risk of bias, directness, consistency, and precision, as well as publication bias, dose response association, plausible unmeasured confounders that would decrease an effect, and strength of association, similar to what is done to grade evidence on treatment interventions. Given that most evidence regarding the clinical value of diagnostic tests is indirect, an analytic framework must be developed to clarify the key questions, and strength of evidence for each link in that framework should be graded separately. However if reviewers choose to combine domains into a single grade of evidence, they should explain their rationale for a particular summary grade and the relevant domains that were weighed in assigning the summary grade.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s11606-012-2021-9

Publication Info

Singh, Sonal, Stephanie M Chang, David B Matchar and Eric B Bass (2012). Chapter 7: grading a body of evidence on diagnostic tests. Journal of general internal medicine, 27 Suppl 1(SUPPL.1). pp. S47–S55. 10.1007/s11606-012-2021-9 Retrieved from https://hdl.handle.net/10161/22832.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Matchar

David Bruce Matchar

Professor of Medicine

My research relates to clinical practice improvement - from the development of clinical policies to their implementation in real world clinical settings. Most recently my major content focus has been cerebrovascular disease. Other major clinical areas in which I work include the range of disabling neurological conditions, cardiovascular disease, and cancer prevention.
Notable features of my work are: (1) reliance on analytic strategies such as meta-analysis, simulation, decision analysis and cost-effectiveness analysis; (2) a balancing of methodological rigor the needs of medical professionals; and (3) dependence on interdisciplinary groups of experts.
This approach is best illustrated by the Stroke Prevention Patient Outcome Research Team (PORT), for which I served as principal investigator. Funded by the AHCPR, the PORT involved 35 investigators at 13 institutions. The Stroke PORT has been highly productive and has led to a stroke prevention project funded as a public/private partnership by the AHCPR and DuPont Pharma, the Managing Anticoagulation Services Trial (MAST). MAST is a practice improvement trial in 6 managed care organizations, focussing on optimizing anticoagulation for individuals with atrial fibrillation.
I serve as consultant in the general area of analytic strategies for clinical policy development, as well as for specific projects related to stroke (e.g., acute stroke treatment, management of atrial fibrillation, and use of carotid endarterectomy.) I have worked with AHCPR (now AHRQ), ACP, AHA, AAN, Robert Wood Johnson Foundation, NSA, WHO, and several pharmaceutical companies.
Key Words: clinical policy, disease management, stroke, decision analysis, clinical guidelines


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.