Short-lived alpha-helical intermediates in the folding of beta-sheet proteins.
Date
2010-07-06
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Several lines of evidence point strongly toward the importance of highly alpha-helical intermediates in the folding of all globular proteins, regardless of their native structure. However, experimental refolding studies demonstrate no observable alpha-helical intermediate during refolding of some beta-sheet proteins and have dampened enthusiasm for this model of protein folding. In this study, beta-sheet proteins were hypothesized to have potential to form amphiphilic helices at a period of <3.6 residues/turn that matches or exceeds the potential at 3.6 residues/turn. Hypothetically, such potential is the basis for an effective and unidirectional mechanism by which highly alpha-helical intermediates might be rapidly disassembled during folding and potentially accounts for the difficulty in detecting highly alpha-helical intermediates during the folding of some proteins. The presence of this potential was confirmed, indicating that a model entailing ubiquitous formation of alpha-helical intermediates during the folding of globular proteins predicts previously unrecognized features of primary structure. Further, the folding of fatty acid binding protein, a predominantly beta-sheet protein that exhibits no apparent highly alpha-helical intermediate during folding, was dramatically accelerated by 2,2,2-trifluoroethanol, a solvent that stabilizes alpha-helical structure. This observation suggests that formation of an alpha-helix can be a rate-limiting step during folding of a predominantly beta-sheet protein and further supports the role of highly alpha-helical intermediates in the folding of all globular proteins.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Chen, E, ML Everett, ZE Holzknecht, RA Holzknecht, SS Lin, DE Bowles and W Parker (2010). Short-lived alpha-helical intermediates in the folding of beta-sheet proteins. Biochemistry, 49(26). pp. 5609–5619. 10.1021/bi100288q Retrieved from https://hdl.handle.net/10161/4008.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.