A novel chloroplast gene reported for flagellate plants.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


PREMISE OF THE STUDY:Gene space in plant plastid genomes is well characterized and annotated, yet we discovered an unrecognized open reading frame (ORF) in the fern lineage that is conserved across flagellate plants. METHODS:We initially detected a putative uncharacterized ORF by the existence of a highly conserved region between rps16 and matK in a series of matK alignments of leptosporangiate ferns. We mined available plastid genomes for this ORF, which we now refer to as ycf94, to infer evolutionary selection pressures and assist in functional prediction. To further examine the transcription of ycf94, we assembled the plastid genome and sequenced the transcriptome of the leptosporangiate fern Adiantum shastense Huiet & A.R. Sm. KEY RESULTS:The ycf94 predicted protein has a distinct transmembrane domain but with no sequence homology to other proteins with known function. The nonsynonymous/synonymous substitution rate ratio of ycf94 is on par with other fern plastid protein-encoding genes, and additional homologs can be found in a few lycophyte, moss, hornwort, and liverwort plastid genomes. Homologs of ycf94 were not found in seed plants. In addition, we report a high level of RNA editing for ycf94 transcripts-a hallmark of protein-coding genes in fern plastomes. CONCLUSIONS:The degree of sequence conservation, together with the presence of a distinct transmembrane domain and RNA-editing sites, suggests that ycf94 is a protein-coding gene of functional significance in ferns and, potentially, bryophytes and lycophytes. However, the origin and exact function of this gene require further investigation.





Published Version (Please cite this version)


Publication Info

Song, M, L Kuo, L Huiet, KM Pryer, CJ Rothfels and F Li (2018). A novel chloroplast gene reported for flagellate plants. American journal of botany, 105(1). pp. 117–121. 10.1002/ajb2.1010 Retrieved from https://hdl.handle.net/10161/21748.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Kathleen M. Pryer

Professor of Biology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.