Reliability assessment of a novel cervical spine deformity classification system.
Date
2015-12
Journal Title
Journal ISSN
Volume Title
Citation Stats
Abstract
Object
Despite the complexity of cervical spine deformity (CSD) and its significant impact on patient quality of life, there exists no comprehensive classification system. The objective of this study was to develop a novel classification system based on a modified Delphi approach and to characterize the intra- and interobserver reliability of this classification.Methods
Based on an extensive literature review and a modified Delphi approach with an expert panel, a CSD classification system was generated. The classification system included a deformity descriptor and 5 modifiers that incorporated sagittal, regional, and global spinopelvic alignment and neurological status. The descriptors included: "C," "CT," and "T" for primary cervical kyphotic deformities with an apex in the cervical spine, cervicothoracic junction, or thoracic spine, respectively; "S" for primary coronal deformity with a coronal Cobb angle ≥ 15°; and "CVJ" for primary craniovertebral junction deformity. The modifiers included C2-7 sagittal vertical axis (SVA), horizontal gaze (chin-brow to vertical angle [CBVA]), T1 slope (TS) minus C2-7 lordosis (TS-CL), myelopathy (modified Japanese Orthopaedic Association [mJOA] scale score), and the Scoliosis Research Society (SRS)-Schwab classification for thoracolumbar deformity. Application of the classification system requires the following: 1) full-length standing posteroanterior (PA) and lateral spine radiographs that include the cervical spine and femoral heads; 2) standing PA and lateral cervical spine radiographs; 3) completed and scored mJOA questionnaire; and 4) a clinical photograph or radiograph that includes the skull for measurement of the CBVA. A series of 10 CSD cases, broadly representative of the classification system, were selected and sufficient radiographic and clinical history to enable classification were assembled. A panel of spinal deformity surgeons was queried to classify each case twice, with a minimum of 1 intervening week. Inter- and intrarater reliability measures were based on calculations of Fleiss k coefficient values.Results
Twenty spinal deformity surgeons participated in this study. Interrater reliability (Fleiss k coefficients) for the deformity descriptor rounds 1 and 2 were 0.489 and 0.280, respectively, and mean intrarater reliability was 0.584. For the modifiers, including the SRS-Schwab components, the interrater (round 1/round 2) and intrarater reliabilities (Fleiss k coefficients) were: C2-7 SVA (0.338/0.412, 0.584), horizontal gaze (0.779/0.430, 0.768), TS-CL (0.721/0.567, 0.720), myelopathy (0.602/0.477, 0.746), SRS-Schwab curve type (0.590/0.433, 0.564), pelvic incidence-lumbar lordosis (0.554/0.386, 0.826), pelvic tilt (0.714/0.627, 0.633), and C7-S1 SVA (0.071/0.064, 0.233), respectively. The parameter with the poorest reliability was the C7-S1 SVA, which may have resulted from differences in interpretation of positive and negative measurements.Conclusions
The proposed classification provides a mechanism to assess CSD within the framework of global spinopelvic malalignment and clinically relevant parameters. The intra- and interobserver reliabilities suggest moderate agreement and serve as the basis for subsequent improvement and study of the proposed classification.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ames, Christopher P, Justin S Smith, Robert Eastlack, Donald J Blaskiewicz, Christopher I Shaffrey, Frank Schwab, Shay Bess, Han Jo Kim, et al. (2015). Reliability assessment of a novel cervical spine deformity classification system. Journal of neurosurgery. Spine, 23(6). pp. 673–683. 10.3171/2014.12.spine14780 Retrieved from https://hdl.handle.net/10161/28482.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Christopher Ignatius Shaffrey
I have more than 25 years of experience treating patients of all ages with spinal disorders. I have had an interest in the management of spinal disorders since starting my medical education. I performed residencies in both orthopaedic surgery and neurosurgery to gain a comprehensive understanding of the entire range of spinal disorders. My goal has been to find innovative ways to manage the range of spinal conditions, straightforward to complex. I have a focus on managing patients with complex spinal disorders. My patient evaluation and management philosophy is to provide engaged, compassionate care that focuses on providing the simplest and least aggressive treatment option for a particular condition. In many cases, non-operative treatment options exist to improve a patient’s symptoms. I have been actively engaged in clinical research to find the best ways to manage spinal disorders in order to achieve better results with fewer complications.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.