Evaluation and Management of Pulmonary Hypertension in Noncardiac Surgery: A Scientific Statement From the American Heart Association.

Abstract

Pulmonary hypertension, defined as an elevation in blood pressure in the pulmonary arteries, is associated with an increased risk of death. The prevalence of pulmonary hypertension is increasing, with an aging population, a rising prevalence of heart and lung disease, and improved pulmonary hypertension survival with targeted therapies. Patients with pulmonary hypertension frequently require noncardiac surgery, although pulmonary hypertension is associated with excess perioperative morbidity and death. This scientific statement provides guidance on the evaluation and management of pulmonary hypertension in patients undergoing noncardiac surgery. We advocate for a multistep process focused on (1) classification of pulmonary hypertension group to define the underlying pathology; (2) preoperative risk assessment that will guide surgical decision-making; (3) pulmonary hypertension optimization before surgery to reduce perioperative risk; (4) intraoperative management of pulmonary hypertension to avoid right ventricular dysfunction and to maintain cardiac output; and (5) postoperative management of pulmonary hypertension to ensure recovery from surgery. Last, this scientific statement highlights the paucity of evidence to support perioperative pulmonary hypertension management and identifies areas of uncertainty and opportunities for future investigation.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1161/cir.0000000000001136

Publication Info

Rajagopal, Sudarshan, Kurt Ruetzler, Kamrouz Ghadimi, Evelyn M Horn, Marta Kelava, Kristina T Kudelko, Ingrid Moreno-Duarte, Ioana Preston, et al. (2023). Evaluation and Management of Pulmonary Hypertension in Noncardiac Surgery: A Scientific Statement From the American Heart Association. Circulation, 147(17). pp. 1317–1343. 10.1161/cir.0000000000001136 Retrieved from https://hdl.handle.net/10161/29713.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Rajagopal

Sudarshan Rajagopal

Associate Professor of Medicine

I am a physician-scientist with a research focus on G protein-coupled receptor signaling in inflammation and vascular disease and a clinical focus on pulmonary vascular disease, as I serve as Co-Director of the Duke Pulmonary Vascular Disease Center. My research spans the spectrum from clinical research in pulmonary vascular disease, to translational research in cardiovascular disease, to the basic science of receptor signaling. 

Our basic science resesarch focuses on understanding and untapping the signaling potential of G protein-coupled receptors (GPCRs) to regulate inflammation in vascular disease. GPCRs are the most common transmembrane receptors in the human genome (over 800 members) and are some of the most successful targets for drug therapies. While it has been known for some time that these receptors signal through multiple downstream effectors (such as heterotrimeric G proteins and multifunctional beta arrestin adapter proteins), over the past decade it has been better appreciated that these receptors are capable of signaling with different efficacies to these effectors, a phenomenon referred to as “biased agonism”. Ligands can be biased, by activating different pathways from one another, and receptors can be biased, by signaling to a limited number of pathways that are normally available to them. Moreover, this phenomenon also appears to be common to other transmembrane and nuclear receptors. While a growing number of biased agonists acting at multiple receptors have been identified, there is still little known regarding the mechanisms underlying biased signaling and its physiologic impact.

Much of our research focuses on the chemokine system, which consists of approximately twenty receptors and fifty ligands that display considerable promiscuity with each other in the regulation of immune cell function in inflammatory diseases. Research from our group and others have shown that many of these ligands act as biased agonists when signaling through the same receptor. We use models of inflammation such as contact hypersensitivity and pulmonary arterial hypertension (PAH). PAH is a disease of the pulmonary arterioles that results in right heart failure and most of its treatments target signaling by GPCRs. We use multiple approaches to probe these signaling mechanisms, including in-house pharmacological assays, advanced phosphoproteomics and single cell RNA sequencing.

Ghadimi

Kamrouz Ghadimi

Associate Professor of Anesthesiology

Overview
Dr. Ghadimi is a cardiothoracic anesthesiologist, intensivist (ICU doctor), researcher, educator, and director of the clinical research unit in the Department of Anesthesiology at Duke Health. He has published over 100 peer-reviewed manuscripts, book chapters, online reviews, and editorials. His expertise involves the perioperative and intensive care management of patients undergoing cardiac and noncardiac surgery, with a special focus on the treatment of bleeding and inflammation related to shock and mechanical circulatory support and on the modification of pulmonary circulation to optimize end-organ blood flow.

Clinical Education
Dr. Ghadimi is a medical school graduate of Boston University School of Medicine, completed his internship in general surgery at the University of California Irvine Medical Center and Long Beach Veterans Affairs Medical Center and completed clinical anesthesiology residency at the Allegheny Health Network in Pittsburgh, Pennsylvania. He completed advanced clinical fellowship specialization in adult Critical Care Medicine (surgical focus) and Cardiothoracic Anesthesiology at the University of Pennsylvania Health System in Philadelphia, Pennsylvania. 

Expertise
Dr. Ghadimi's expertise and instruction spans across the cardiothoracic operating rooms and cardiothoracic surgical ICU environments. His expertise includes perioperative hemostasis & thrombosis, critical care of the heart or lung transplant recipient, and critical care for the patient on mechanical circulatory support, which may include extracorporeal life support (ECMO) or ventricular assist devices/systems.

Research Education
Dr. Ghadimi is a clinical and translational researcher and holds a Master in Health Sciences (M.H.Sc.) from the Duke-NIH Clinical Research Training Program. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.