Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity.
Date
2023-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Introduction
Asthma is a chronic airway inflammatory disease marked by airway inflammation, remodeling and hyperresponsiveness to allergens. Allergic asthma is normally well controlled through the use of beta-2-adrenergic agonists and inhaled corticosteroids; however, a subset of patients with comorbid obesity experience resistance to currently available therapeutics. Patients with asthma and comorbid obesity are also at a greater risk for severe disease, contributing to increased risk of hospitalization. Bariatric surgery improves asthma control and airway hyperresponsiveness in patients with asthma and comorbid obesity, however, the underlying mechanisms for these improvements remain to be elucidated. We hypothesized that vertical sleeve gastrectomy (VSG), a model of metabolic surgery in mice, would improve glucose tolerance and airway inflammation, resistance, and fibrosis induced by chronic allergen challenge and obesity.Methods
Male C57BL/6J mice were fed a high fat diet (HFD) for 13 weeks with intermittent house dust mite (HDM) allergen administration to induce allergic asthma, or saline as control. At week 11, a subset of mice underwent VSG or Sham surgery with one week recovery. A separate group of mice did not undergo surgery. Mice were then challenged with HDM or saline along with concurrent HFD feeding for 1-1.5 weeks before measurement of lung mechanics and harvesting of tissues, both of which occurred 24 hours after the final HDM challenge. Systemic and pulmonary cytokine profiles, lung histology and gene expression were analyzed.Results
High fat diet contributed to increased body weight, serum leptin levels and development of glucose intolerance for both HDM and saline treatment groups. When compared to saline-treated mice, HDM-challenged mice exhibited greater weight gain. VSG improved glucose tolerance in both saline and HDM-challenged mice. HDM-challenged VSG mice exhibited an increase in airway hyperresponsiveness to methacholine when compared to the non-surgery group.Discussion
The data presented here indicate increased airway hyperresponsiveness in allergic mice undergoing bariatric surgery.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Womble, Jack T, Mark D Ihrie, Victoria L McQuade, Akhil Hegde, Matthew S McCravy, Sanat Phatak, Robert M Tighe, Loretta G Que, et al. (2023). Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity. Frontiers in endocrinology, 14. p. 1092277. 10.3389/fendo.2023.1092277 Retrieved from https://hdl.handle.net/10161/28577.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Matthew Scott McCravy
Robert Matthew Tighe
The research focus of the Tighe laboratory is performing pulmonary basic-translational studies to define mechanisms of susceptibility to lung injury and disease. There are three principal focus areas. These include: 1) Identifying susceptibility factors and candidate pathways relevant to host biological responses to environmental pollutants such as ozone, woodsmoke and silica, 2) Defining protective and detrimental functions of lung macrophage subsets and their cross talk with the epithelium to regulate lung injury and repair, and 3) Determining the prognostic and theragnostic efficacy of 3D lung gas exchange imaging in pulmonary fibrosis using hyperpolarized 129Xenon MRI.
-
Susceptibility Factors for Environmental Lung Disease: In NIH funded studies the Tighe lab has been performing fully translational studies of lung responses to ozone. These include cell, rodent and human exposure studies to define mechanisms of susceptibility to exposure. By carefully dissecting these links, we will gain insight into how environmental pollutants acutely induce respiratory symptoms and exacerbate chronic lung diseases. This can lead to targeted therapeutics and/or identify susceptible populations. This includes exploration of genetic factors and also other metabolic and immunologic factors.
-
Pulmonary Macrophage Functions and Crosstalk with Lung Epithelial Cells: The central hypothesis of this line of research is that macrophages are key regulators of the biologic responses to environmental pollutants and the development of chronic lung disease. The Tighe laboratory has pioneered the identification of novel pulmonary macrophage subsets and has defined their function in lung injury and repair. In both published work and areas of active investigation, the Tighe lab has identified macrophage subsets with unique genetic programming and function after challenges with environmental exposures such as ozone, wood smoke and silica. Since macrophages have both detrimental and protective functions, identifying these subsets offers the opportunity to understand their unique programing and function. This could allow development of targeted therapeutics that take advantage of these functions, polarize the immune responses and alleviate respiratory disease. In addition, we are focused on macrophage and epithelial crosstalk and how their combined responses regulate lung injury and repair. These studies include omics approaches with single-cell RNA sequencing, proteomics and metabolomics and lung organoids to identify unique signals between macrophages and epithelial cells.
-
Using Hyperpolarized 129Xenon MRI to Define Prognosis and Therapy Responses in Pulmonary Fibrosis: In industry funded studies, the Tighe lab is focused on using a novel image modality to assess prognosis and therapeutic responses in individuals with pulmonary fibrosis. Pulmonary fibrosis is a disorder of progressive scar formation in the lung that causes increased shortness of breath and persistent coughing, frequently leading to death from respiratory failure. Presently, there are limited modalities that can assess prognosis in pulmonary fibrosis and can determine which individuals are responding to therapies. To address this, the Tighe lab, in collaboration with Dr. Bastiaan Driehuys in the Department of Radiology, is using inhaled hyperpolarized 129Xenon gas MRI to define regional differences in lung gas exchange in individuals with pulmonary fibrosis. Our preliminary data suggest that baseline characteristics of 129Xenon MRI associate with pulmonary fibrosis prognosis. In addition, we observe changes in the 129Xenon MRI metrics following initiation of pulmonary fibrosis therapies. These initial observations are being confirmed in ongoing clinical trials.
Loretta Georgina Que
My research interests focus on studying the role of nitric oxide and related enzymes in the pathogenesis of lung disease, specifically that caused by nitrosative/oxidative stress. Proposed studies are performed in cell culture and applied to animal models of disease, then examined in human disease where relevant. It is our hope that by better understanding the role of NO and reactive nitrogen species in mediating inflammation, and regulating cell signaling, that we will not only help to unravel the basic mechanisms of NO related lung disease, but also provide a rationale for targeted therapeutic use of NO.
Key words: nitrosative defense, lung injury, nitric oxide
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.