Fluorine-18 Labeling of the MDM2 Inhibitor RG7388 for PET Imaging: Chemistry and Preliminary Evaluation.
Date
2021-09-15
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
RG7388 (Idasanutlin) is a potent inhibitor of oncoprotein murine double minute 2 (MDM2). Herein we investigated the feasibility of developing 18F-labeled RG7388 as a radiotracer for imaging MDM2 expression in tumors with positron emission tomography (PET). Two fluorinated analogues of RG7388, 6 and 7, were synthesized by attaching a fluoronicotinyl moiety to RG7388 via a polyethylene glycol (PEG3) or a propyl linker. The inhibitory potency (IC50) of 6 and 7 against MDM2 was determined by a fluorescence polarization (FP)-based assay. Next, compound 6 was labeled with 18F using a trimethylammonium triflate precursor to obtain [18F]FN-PEG3-RG7388 ([18F]6), and its properties were evaluated in MDM2 expressing wild-type p53 tumor cell lines (SJSA-1 and HepG2) in vitro and in tumor xenografts in vivo. The FP assays revealed an IC50 against MDM2 of 119 nM and 160 nM for 6 and 7, respectively. 18F-labeling of 6 was achieved in 50.3 ± 7.5% radiochemical yield. [18F]6 exhibited a high uptake (∼70% of input dose) and specificity in SJSA-1 and HepG2 cell lines. Saturation binding assays revealed a binding affinity (Kd) of 128 nM for [18F]6 on SJSA-1 cells. In mice, [18F]6 showed fast clearance from blood with a maximum tumor uptake of 3.80 ± 0.85% injected dose per gram (ID/g) in HepG2 xenografts at 30 min postinjection (p.i.) and 1.32 ± 0.32% ID/g in SJSA-1 xenografts at 1 h p.i. Specificity of [18F]6 uptake in tumors was demonstrated by pretreatment of mice with SJSA-xenografts with a blocking dose of RG7388 (35 mg/kg body weight, i.p.). In vivo stability studies in mice using HPLC showed ∼60% and ∼30% intact [18F]6 remaining in plasma at 30 min and 1 h p.i., respectively, with the remaining activity attributed to polar peaks. Our results suggest that RG7388 is a promising molecular scaffold for 18F-labeled probe development for MDM2. Additional labeling strategies and functionalizing locations on RG7388 are under development to improve binding affinity and in vivo stability of the 18F-labeled compound to make it more amenable for PET imaging of MDM2 in vivo.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Zhou, Zhengyuan, Michael R Zalutsky and Satish K Chitneni (2021). Fluorine-18 Labeling of the MDM2 Inhibitor RG7388 for PET Imaging: Chemistry and Preliminary Evaluation. Molecular pharmaceutics. 10.1021/acs.molpharmaceut.1c00531 Retrieved from https://hdl.handle.net/10161/23875.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Michael Rod Zalutsky
The overall objective of our laboratory is the development of novel radioactive compounds for improving the diagnosis and treatment of cancer. This work primarily involves radiohalo-genation of biomolecules via site-specific approaches, generally via demetallation reactions. Radionuclides utilized for imaging include I-123, I-124 and F-18, the later two being of particular interest because they can be used for the quantification of biochemical and physiological processes in the living human through positron emission tomography. For therapy, astatine-211 decays by the emission of alpha-particles, a type of radiation considerably more cytotoxic that the beta-particles used in conventional endoradiotherapy. The range of At-211 alpha particles is only a few cell diameters, offering the possibility of extremely focal irradiation of malignant cells while leaving neighboring cells intact. Highlights of recent work include: a)
development of reagents for protein and peptide radioiodination that decrease deiodination in vivo by up to 100-fold, b) demonstration that At-211 labeled monoclonal antibodies are effective in the treatment of a rat model of neoplastic meningitis, c) synthesis of a thymidine analogue labeled with At-211 and the demonstration that this molecule is taken up in cellular DNA with highly cytotoxicity even at levels of only one atom bound per cell and d) development of
radiohalobenzylguanidines which are specifically cytotoxic for human neuroblastoma cells.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.