Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice.
Date
2016-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Metallothioneins (MT) are small proteins, which are crucial for the distribution of heavy and transition metals. Previously, we found in mice that knockout of MT 1 and 2 genes (MTKO) impaired spatial learning and potentiated the learning impairment caused by developmental mercury exposure. The current study examined the neurocognitive and neurochemical effects of MTKO with the developmental copper (Cu) supplementation.Methods
Wildtype (WT) and MTKO mice were given supplemental Cu (0, 10 or 50 mg/l) in their drinking water during gestation and until weaning. When the mice were young adults they were trained on the win-shift 8-arm radial maze test of spatial learning and memory. After cognitive testing, their brains were analyzed for norepinepherine, dopamine and serotonin levels.Results
In the spatial learning test, wildtype mice showed the normal sex difference with males performing more accurately than the females. This effect was eliminated by MTKO and restored by moderate Cu supplementation during development. In neurochemical studies, MTKO caused a significant overall increase in serotonin in all of the regions studied: the frontal cortex, posterior cortex, hippocampus, striatum, midbrain, and brainstem. MTKO also caused a significant increase in norepinepherine in the brainstem and hippocampus. In wildtype mice, Cu supplementation during development caused a significant decline in dopamine and norepinepherine in the midbrain and dopamine in the frontal cortex. These effects were blocked by MTKO.Conclusions
The normal sex difference in spatial working memory accuracy, which was eliminated by MTKO, was restored by moderate copper supplementation. MTKO increased serotonin across all brain areas studied and increased norepinepherine only in the hippocampus and brainstem. MTKO blocked copper-induced decreases in dopamine and norepinepherine in the midbrain and dopamine in the frontal cortex.Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Petro, Ann, Hannah G Sexton, Caroline Miranda, Anit Rastogi, Jonathan H Freedman and Edward D Levin (2016). Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice. BMC pharmacology & toxicology, 17(1). p. 55. 10.1186/s40360-016-0096-3 Retrieved from https://hdl.handle.net/10161/28274.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Edward Daniel Levin
Dr. Levin is Chief of the Neurobehavioral Research Lab in the Psychiatry Department of Duke University Medical Center. His primary academic appointment is as Professor in the Department of Psychiatry and Behavioral Sciences. He also has secondary appointments in the Department Pharmacology and Cancer Biology, the Department of Psychological and Brain Sciences and the Nicholas School of the Environment at Duke. His primary research effort is to understand basic neural interactions underlying cognitive function and addiction and to apply this knowledge to better understand cognitive dysfunction and addiction disorders and to develop novel therapeutic treatments.
The three main research components of his laboratory are focused on the themes of the basic neurobiology of cognition and addiction, neurobehavioral toxicology and the development of novel therapeutic treatments for cognitive dysfunction and substance abuse. Currently, our principal research focus concerns nicotine. We have documented the basic effects of nicotine on learning memory and attention as well as nicotine self-administration. We are continuing with more mechanistic studies in rat models using selective lesions, local infusions and neurotransmitter interaction studies. We have found that nicotine improves memory performance not only in normal rats, but also in rats with lesions of hippocampal and basal forebrain connections. We are concentrating on alpha7 and alpha4beta2 nicotinic receptor subtypes in the hippocampus, amygdala , thalamus and frontal cortex and how they interact with dopamine D1 and D2 and glutamate NMDA systems with regard to memory and addiction. I am also conducting studies on human cognitive behavior. We have current studies to assess nicotine effects on attention, memory and mental processing speed in schizophrenia, Alzheimer's Disease and Attention Deficit Hyperactivity Disorder. In the area of neurobehavioral toxicology, I have continuing projects to characterize the adverse effects of prenatal and adolescent nicotine exposure. Our primary project in neurobehavioral toxicology focuses on the cognitive deficits caused by the marine toxins. The basic and applied aims of our research complement each other nicely. The findings concerning neural mechanisms underlying cognitive function help direct the behavioral toxicology and therapeutic development studies, while the applied studies provide important functional information concerning the importance of the basic mechanisms under investigation.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.