Direct Communication Between Brains: A Systematic PRISMA Review of Brain-To-Brain Interface.
Date
2021-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
This paper aims to review the current state of brain-to-brain interface (B2BI) technology and its potential. B2BIs function via a brain-computer interface (BCI) to read a sender's brain activity and a computer-brain interface (CBI) to write a pattern to a receiving brain, transmitting information. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to systematically review current literature related to B2BI, resulting in 15 relevant publications. Experimental papers primarily used transcranial magnetic stimulation (tMS) for the CBI portion of their B2BI. Most targeted the visual cortex to produce phosphenes. In terms of study design, 73.3% (11) are unidirectional and 86.7% (13) use only a 1:1 collaboration model (subject to subject). Limitations are apparent, as the CBI method varied greatly between studies indicating no agreed upon neurostimulatory method for transmitting information. Furthermore, only 12.4% (2) studies are more complicated than a 1:1 model and few researchers studied direct bidirectional B2BI. These studies show B2BI can offer advances in human communication and collaboration, but more design and experiments are needed to prove potential. B2BIs may allow rehabilitation therapists to pass information mentally, activating a patient's brain to aid in stroke recovery and adding more complex bidirectionality may allow for increased behavioral synchronization between users. The field is very young, but applications of B2BI technology to neuroergonomics and human factors engineering clearly warrant more research.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Nam, Chang S, Zachary Traylor, Mengyue Chen, Xiaoning Jiang, Wuwei Feng and Pratik Yashvant Chhatbar (2021). Direct Communication Between Brains: A Systematic PRISMA Review of Brain-To-Brain Interface. Frontiers in neurorobotics, 15. p. 656943. 10.3389/fnbot.2021.656943 Retrieved from https://hdl.handle.net/10161/23365.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Wuwei Feng
Wayne Feng is the Chief of Division of Stroke & Vascular Neurology, Medical Director of Duke Comprehensive Stroke Center, and Tenured Profess of Neurology and Biomedical Engineering at Duke University School of Medicine. Dr. Feng is a board-certified vascular neurologist as well as a physician scientist. His research portfolios include developing imaging biomarker for post-stroke motor outcomes prediction, and use of non-invasive brain stimulation tools, such as, transcranial direct current stimulation (tDCS), vagus nerve stimulation, low intensity focused ultrasound and transcranial light stimulation to enhance post-stroke recovery. His research has been actively funded by the National Institute of Health (NIH), the American Heart Association/American Stroke Association (AHA/ASA) and other various sources. He is currently leading an NIH funded 8.9 million U01 12-center, phase II study called TRANSPORT 2 (TRANScranial direct current stimulation for POst-stroke motor Recovery – a phase II sTudy) – on the NINDS funded stroke trial network.
Dr. Feng has published over 150 peer reviewed manuscripts (H index of 36), including two manuscripts featured on the cover page of brain stimulation journal, and one manuscript featured on Journal of Neuroscience. He co-edited - “Cerebral Venous System in Acute and Chronic Brain Injuries” book. He served as the associate editor for Translational Stroke Research from 2019 to 2021(IF=7.0). Dr. Feng received several prestigious awards for his research work in stroke and stroke recovery including the FIRST “Rehabilitation Award” from the American Heart Association/American Stroke Association in 2015, “Franz Gerstenbrand Award” from World Federation of Neurorehabilitation (WFNR) in 2016, Arthur Guyton New Investigator Award, Consortium for Southeastern Hypertension Control (COSEHC) in 2016 and “Clinical Investigator Award” from the Society of Chinese American Physician Entrepreneur (SCAPE). Currently, he is the Section Chair of Neural Repair & Rehabilitation, the American Academy of Neurology. He leads the global mentoring program for the WFNR.
Pratik Yashvant Chhatbar
Neuromodulation / Neuroprosthetics / Upcoming technologies
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.