Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression

dc.contributor.author

Subramaniyam, Siddharth

dc.contributor.author

DeJesus, Michael A

dc.contributor.author

Zaveri, Anisha

dc.contributor.author

Smith, Clare M

dc.contributor.author

Baker, Richard E

dc.contributor.author

Ehrt, Sabine

dc.contributor.author

Schnappinger, Dirk

dc.contributor.author

Sassetti, Christopher M

dc.contributor.author

Ioerger, Thomas R

dc.date.accessioned

2019-12-19T18:08:43Z

dc.date.available

2019-12-19T18:08:43Z

dc.date.issued

2019-12

dc.date.updated

2019-12-19T18:08:42Z

dc.identifier.issn

1471-2105

dc.identifier.uri

https://hdl.handle.net/10161/19608

dc.language

en

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

BMC Bioinformatics

dc.relation.isversionof

10.1186/s12859-019-3156-z

dc.title

Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression

dc.type

Journal article

duke.contributor.orcid

Smith, Clare M|0000-0003-2601-0955

pubs.issue

1

pubs.organisational-group

School of Medicine

pubs.organisational-group

Duke

pubs.organisational-group

Duke Human Vaccine Institute

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

Molecular Genetics and Microbiology

pubs.organisational-group

Basic Science Departments

pubs.publication-status

Published

pubs.volume

20

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Subramaniyam2019_BMC.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format