Particle Production in Ultrastrong-Coupling Waveguide QED
Date
2018-10-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Understanding large-scale interacting quantum matter requires dealing with the huge number of quanta that are produced by scattering even a few particles against a complex quantum object. Prominent examples are found from high-energy cosmic ray showers, to the optical or electrical driving of degenerate Fermi gases. We tackle this challenge in the context of many-body quantum optics, as motivated by the recent developments of circuit quantum electrodynamics at ultrastrong coupling. The issue of particle production is addressed quantitatively with a simple yet powerful concept rooted in the quantum superposition principle of multimode coherent states. This key idea is illustrated by the study of multiphoton emission from a single two-level artificial atom coupled to a high impedance waveguide, driven by a nearly monochromatic coherent tone. We find surprisingly that the off-resonant inelastic emission line shape is dominated by broadband particle production, due to the large phase space associated with contributions that do not conserve the number of excitations. Such frequency conversion processes produce striking signatures in time correlation measurements, which can be tested experimentally in quantum waveguides. These ideas open new directions for the simulation of a variety of physical systems, from polaron dynamics in solids to complex superconducting quantum architectures.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Gheeraert, Nicolas, Xin HH Zhang, Théo Sépulcre, Soumya Bera, Nicolas Roch, Harold U Baranger and Serge Florens (2018). Particle Production in Ultrastrong-Coupling Waveguide QED. Physical Review A, 98(4). pp. 043816–043816. 10.1103/physreva.98.043816 Retrieved from https://hdl.handle.net/10161/26452.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Xin Zhang
I publish with the name Xin H. H. Zhang.
My ORCID: https://orcid.org/0000-0002-2972-0402
My webpage: https://sites.google.com/view/xinzhang/home
Harold U. Baranger
The broad focus of Prof. Baranger's group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena can be uncovered on the one hand, and the microscopic basis of bulk phenomena can be probed on the other. Additional interest comes from the many links between nanophysics and nanotechnology. Within this thematic area, our work ranges from projects trying to nail down realistic behavior in well-characterized systems, to more speculative projects reaching beyond regimes investigated experimentally to date.
Correlations between particles are a central issue in many areas of condensed matter physics, from emergent many-body phenomena in complex materials, to strong matter-light interactions in quantum information contexts, to transport properties of single molecules. Such correlations, for either electrons or bosons (photons, plasmons, phonons,…), underlie key phenomena in nanostructures. Using the exquisite control of nanostructures now possible, experimentalists will be able to engineer correlations in nanosystems in the near future. Of particular interest are cases in which one can tune the competition between different types of correlation, or in which correlation can be tunably enhanced or suppressed by other effects (such as confinement or interference), potentially causing a quantum phase transition-- a sudden, qualitative change in the correlations in the system.
My recent work has addressed correlations in both electronic systems (quantum wires and dots) and photonic systems (photon waveguides). We have focused on 3 different systems: (1) qubits coupled to a photonic waveguide, (2) quantum dots in a dissipative environment, and (3) interfaces between graphene and a superconductor, particularly when graphene is in the quantum Hall state. The methods used are both analytical and numerical, and are closely linked to experiments.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.