Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Intervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to lower back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Previous studies have shown that NP cell-laminin interactions promote cell adhesion and biosynthesis, which suggests a laminin-functionalized biomaterial may be useful for promoting or maintaining the NP cell phenotype. Here, a photocrosslinkable poly(ethylene glycol)-laminin 111 (PEG-LM111) hydrogel was developed. The mechanical properties of PEG-LM111 hydrogel could be tuned within the range of dynamic shear moduli values previously reported for human NP. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, LM111-presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111-presenting and PEG-only gels. When cells were encapsulated in 3-D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1 kPa) PEG-LM111 hydrogels. Overall, these findings suggest that soft, LM111-functionalized hydrogels may promote or maintain the expression of specific markers characteristic of an immature NP cell phenotype. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.






Published Version (Please cite this version)


Publication Info

Francisco, Aubrey T, Priscilla Y Hwang, Claire G Jeong, Liufang Jing, Jun Chen and Lori A Setton (2014). Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomaterialia, 10(3). pp. 1102–1111. 10.1016/j.actbio.2013.11.013 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.