A hidden Markov model approach to analyze longitudinal ternary outcomes when some observed states are possibly misclassified

dc.contributor.author

Benoit, JS

dc.contributor.author

Chan, W

dc.contributor.author

Luo, S

dc.contributor.author

Yeh, HW

dc.contributor.author

Doody, R

dc.date.accessioned

2017-09-07T22:23:36Z

dc.date.available

2017-09-07T22:23:36Z

dc.date.issued

2016

dc.identifier.uri

https://hdl.handle.net/10161/15488

dc.publisher

Wiley Online Library

dc.relation.ispartof

Statistics in Medicine

dc.title

A hidden Markov model approach to analyze longitudinal ternary outcomes when some observed states are possibly misclassified

dc.type

Journal article

duke.contributor.orcid

Luo, S|0000-0003-4214-5809

pubs.begin-page

1549

pubs.end-page

1557

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Duke

pubs.organisational-group

Duke Clinical Research Institute

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

School of Medicine

pubs.volume

35

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2016Benoit_Chan_Luo_Yeh_Doody2016SIM.pdf
Size:
149.87 KB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
2016Benoit_Chan_Luo_Yeh_Doody2016SIM_suppl.pdf
Size:
105.93 KB
Format:
Adobe Portable Document Format
Description:
Supporting information