Beta-negative binomial process and poisson factor analysis
Date
2012-01-01
Authors
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
© Copyright 2012 by the authors. A beta-negative binomial (BNB) process is proposed, leading to a beta-gamma-Poisson process, which may be viewed as a "multiscoop" generalization of the beta-Bernoulli process. The BNB process is augmented into a beta-gamma-gamma-Poisson hierarchical structure, and applied as a nonparametric Bayesian prior for an infinite Poisson factor analysis model. A finite approximation for the beta process Lévy random measure is constructed for convenient implementation. Efficient MCMC computations are performed with data augmentation and marginalization techniques. Encouraging results are shown on document count matrix factorization.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke

David B. Dunson
My research focuses on developing new tools for probabilistic learning from complex data - methods development is directly motivated by challenging applications in ecology/biodiversity, neuroscience, environmental health, criminal justice/fairness, and more. We seek to develop new modeling frameworks, algorithms and corresponding code that can be used routinely by scientists and decision makers. We are also interested in new inference framework and in studying theoretical properties of methods we develop.
Some highlight application areas:
(1) Modeling of biological communities and biodiversity - we are considering global data on fungi, insects, birds and animals including DNA sequences, images, audio, etc. Data contain large numbers of species unknown to science and we would like to learn about these new species, community network structure, and the impact of environmental change and climate.
(2) Brain connectomics - based on high resolution imaging data of the human brain, we are seeking to developing new statistical and machine learning models for relating brain networks to human traits and diseases.
(3) Environmental health & mixtures - we are building tools for relating chemical and other exposures (air pollution etc) to human health outcomes, accounting for spatial dependence in both exposures and disease. This includes an emphasis on infectious disease modeling, such as COVID-19.
Some statistical areas that play a prominent role in our methods development include models for low-dimensional structure in data (latent factors, clustering, geometric and manifold learning), flexible/nonparametric models (neural networks, Gaussian/spatial processes, other stochastic processes), Bayesian inference frameworks, efficient sampling and analytic approximation algorithms, and models for "object data" (trees, networks, images, spatial processes, etc).
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.