Global Motion Processing by Populations of Direction-Selective Retinal Ganglion Cells.

Loading...
Thumbnail Image

Date

2020-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

41
views
14
downloads

Citation Stats

Abstract

Simple stimuli have been critical to understanding neural population codes in sensory systems. Yet it remains necessary to determine the extent to which this understanding generalizes to more complex conditions. To examine this problem, we measured how populations of direction-selective ganglion cells (DSGCs) from the retinas of male and female mice respond to a global motion stimulus with its direction and speed changing dynamically. We then examined the encoding and decoding of motion direction in both individual and populations of DSGCs. Individual cells integrated global motion over ∼200 ms, and responses were tuned to direction. However, responses were sparse and broadly tuned, which severely limited decoding performance from small DSGC populations. In contrast, larger populations compensated for response sparsity, enabling decoding with high temporal precision (<100 ms). At these timescales, correlated spiking was minimal and had little impact on decoding performance, unlike results obtained using simpler local motion stimuli decoded over longer timescales. We use these data to define different DSGC population decoding regimes that use or mitigate correlated spiking to achieve high-spatial versus high-temporal resolution.SIGNIFICANCE STATEMENT ON-OFF direction-selective ganglion cells (ooDSGCs) in the mammalian retina are typically thought to signal local motion to the brain. However, several recent studies suggest they may signal global motion. Here we analyze the fidelity of encoding and decoding global motion in a natural scene across large populations of ooDSGCs. We show that large populations of DSGCs are capable of signaling rapid changes in global motion.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1523/jneurosci.0564-20.2020

Publication Info

Cafaro, Jon, Joel Zylberberg and Greg D Field (2020). Global Motion Processing by Populations of Direction-Selective Retinal Ganglion Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 40(30). pp. 5807–5819. 10.1523/jneurosci.0564-20.2020 Retrieved from https://hdl.handle.net/10161/22491.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Field

Greg D. Field

Adjunct Associate Professor of Neurobiology

My laboratory studies how the retina processes visual scenes and transmits this information to the brain.  We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.