Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.

Abstract

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/s41586-020-2607-z

Publication Info

Mercado, Noe B, Roland Zahn, Frank Wegmann, Carolin Loos, Abishek Chandrashekar, Jingyou Yu, Jinyan Liu, Lauren Peter, et al. (2020). Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 586(7830). pp. 583–588. 10.1038/s41586-020-2607-z Retrieved from https://hdl.handle.net/10161/27267.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Reeves

Roger Keith Reeves

Professor in Surgery

Formerly of Harvard Medical School and Beth Israel Deaconess Medical Center, Dr. R. Keith Reeves is currently tenured Professor of Surgery at Duke University, as well as Director of the Division of Innate and Comparative Immunology and Head of Innovation Partnerships in the Center for Human Systems Immunology. He is also currently the Director of the Duke CFAR Developmental Core and Editor-in-Chief of AIDS Research and Human Retroviruses. Over his academic career he has published extensively in the field of NK cell biology, providing some of the most comprehensive analyses of NK cells and innate lymphoid cells, including the first characterization of memory NK cells in any primate species.  Dr. Reeves’ research has been supported by NIH for over a decade by individual and consortia grants, and in addition to independent work, he collaborates as part of the HIV Vaccine Trials Network (HVTN) and the BEAT-HIV Martin Delaney HIV Cure Collaboratory.   Dr. Reeves has also served on multiple standing NIH study sections (HIV Immunopathogenesis and Vaccine Development), as well as on standing and ad hoc grant review committees for amfAR, the United States-Israel Binational Science Foundation, the UK Medical Research Council and California Institute of Regenerative Medicine, among others.   Considered a global expert in NK cell biology, Dr. Reeves’ group continues to focus on cutting edge approaches to harness NK cells in the context of vaccines and antiviral therapeutics for HIV, CMV, HCV, influenza and SARSCoV2.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.