Is cortical connectivity optimized for storing information?

Loading...
Thumbnail Image

Date

2016-05

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

68
views
101
downloads

Citation Stats

Abstract

Cortical networks are thought to be shaped by experience-dependent synaptic plasticity. Theoretical studies have shown that synaptic plasticity allows a network to store a memory of patterns of activity such that they become attractors of the dynamics of the network. Here we study the properties of the excitatory synaptic connectivity in a network that maximizes the number of stored patterns of activity in a robust fashion. We show that the resulting synaptic connectivity matrix has the following properties: it is sparse, with a large fraction of zero synaptic weights ('potential' synapses); bidirectionally coupled pairs of neurons are over-represented in comparison to a random network; and bidirectionally connected pairs have stronger synapses on average than unidirectionally connected pairs. All these features reproduce quantitatively available data on connectivity in cortex. This suggests synaptic connectivity in cortex is optimized to store a large number of attractor states in a robust fashion.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/nn.4286

Publication Info

Brunel, Nicolas (2016). Is cortical connectivity optimized for storing information?. Nature neuroscience, 19(5). pp. 749–755. 10.1038/nn.4286 Retrieved from https://hdl.handle.net/10161/23352.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Brunel

Nicolas Brunel

Adjunct Professor of Neurobiology

We use theoretical models of brain systems to investigate how they process and learn information from their inputs. Our current work focuses on the mechanisms of learning and memory, from the synapse to the network level, in collaboration with various experimental groups. Using methods from
statistical physics, we have shown recently that the synaptic
connectivity of a network that maximizes storage capacity reproduces
two key experimentally observed features: low connection probability
and strong overrepresentation of bidirectionnally connected pairs of
neurons. We have also inferred `synaptic plasticity rules' (a
mathematical description of how synaptic strength depends on the
activity of pre and post-synaptic neurons) from data, and shown that
networks endowed with a plasticity rule inferred from data have a
storage capacity that is close to the optimal bound.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.