Geodesic behavior for Finsler metrics of constant positive flag curvature on S^2
Abstract
We study non-reversible Finsler metrics with constant flag curvature 1 on S^2 and show that the geodesic flow of every such metric is conjugate to that of one of Katok's examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with constant positive flag curvature is completely integrable. Finally, we give an example of a Finsler metric on S^2 with positive flag curvature such that no two closed geodesics intersect and show that this is not possible when the metric is reversible or have constant flag curvature
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.