Stapled peptides as scaffolds for developing radiotracers for intracellular targets: Preliminary evaluation of a radioiodinated MDM2-binding stapled peptide in the SJSA-1 osteosarcoma model.

Loading...
Thumbnail Image

Date

2022-04-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

45
views
86
downloads

Citation Stats

Abstract

Stapled peptides are promising scaffolds for inhibiting protein-protein interactions in cells, including between the intracellular oncoprotein MDM2 and p53. Herein, we have investigated the potential utility of a stapled peptide, VIP116, for developing radiolabeled agents targeting MDM2. VIP116 was radioiodinated using the prosthetic agent N-succinimidyl-3-[*I]iodobenzoate ([*I]SIB). The resulting labeled peptide [*I]SIB-VIP116 exhibited high uptake (165.3 ± 27.7%/mg protein) and specificity in SJSA-1 tumor cells. Tissue distribution studies of [*I]SIB-VIP116 revealed a peak tumor uptake of 2.19 ± 0.56 percent injected dose per gram (%ID/g) in SJSA-1 xenografts at 2 h post-injection, which was stable until 6 h. [*I]SIB-VIP116 exhibited high activity (8.33 ± 1.18%ID/g) in the blood pool but had high tumor-to-muscle ratios (12.0 ± 5.7), at 30 min. Metabolic stability studies in mice indicated that about 80% of the activity in plasma was intact [*I]SIB-VIP116 at 4 h. Our results confirm the cell permeability and specific binding of [*I]SIB-VIP116 to MDM2 and the suitability of the VIP116 scaffold for radiolabeled probe development.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.bmcl.2022.128725

Publication Info

Zhou, Zhengyuan, Michael R Zalutsky and Satish K Chitneni (2022). Stapled peptides as scaffolds for developing radiotracers for intracellular targets: Preliminary evaluation of a radioiodinated MDM2-binding stapled peptide in the SJSA-1 osteosarcoma model. Bioorganic & medicinal chemistry letters, 66. p. 128725. 10.1016/j.bmcl.2022.128725 Retrieved from https://hdl.handle.net/10161/24959.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.