Noise-induced strong stabilization

dc.contributor.author

Leimbach, Matti

dc.contributor.author

Mattingly, Jonathan C

dc.contributor.author

Scheutzow, Michael

dc.date.accessioned

2020-11-05T14:33:17Z

dc.date.available

2020-11-05T14:33:17Z

dc.date.updated

2020-11-05T14:33:16Z

dc.description.abstract

We consider a 2-dimensional stochastic differential equation in polar coordinates depending on several parameters. We show that if these parameters belong to a specific regime then the deterministic system explodes in finite time, but the random dynamical system corresponding to the stochastic equation is not only strongly complete but even admits a random attractor.

dc.identifier.uri

https://hdl.handle.net/10161/21682

dc.subject

math.DS

dc.subject

math.DS

dc.subject

math.PR

dc.subject

37H30, 60H10, 34D45

dc.title

Noise-induced strong stabilization

dc.type

Journal article

duke.contributor.orcid

Mattingly, Jonathan C|0000-0002-1819-729X

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009.10573v1.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Submitted version