PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

Abstract

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.ppat.1001069

Publication Info

LaFayette, Shantelle L, Cathy Collins, Aimee K Zaas, Wiley A Schell, Marisol Betancourt-Quiroz, AA Leslie Gunatilaka, John R Perfect, Leah E Cowen, et al. (2010). PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog, 6(8). p. e1001069. 10.1371/journal.ppat.1001069 Retrieved from https://hdl.handle.net/10161/4605.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Zaas

Aimee Kirsch Zaas

Professor of Medicine

Medical education
Genomic applications for diagnosis of infectious diseases
Genomic applications for prediction of infectious diseases

Schell

Wiley Alexander Schell

Associate Professor Emeritus in Medicine
Perfect

John Robert Perfect

James B. Duke Distinguished Professor of Medicine

Research in my laboratory focuses around several aspects of medical mycology. We are investigating antifungal agents (new and old) in animal models of candida and cryptococcal infections. We have examined clinical correlation of in vitro antifungal susceptibility testing and with in vivo outcome. Our basic science project examines the molecular pathogenesis of cryptococcal infections. We have developed a molecular foundation for C. neoformans, including transformation systems, gene disruptions, differential gene expression screens, and cloning pathogenesis genes. The goal of this work is to use C. neoformans as a model yeast system to identify molecular targets for antifungal drug development. There are a series of clinical trials in fungal infections which are being coordinated through this laboratory and my work also includes a series of antibiotic trials in various aspects of infections. Finally, we have now been awarded a NIH sponsored Mycology Unit for 5 years with 6 senior investigators which is focused on C. neoformans as a pathogenic model system, but will include multiple areas of medical mycology from diagnosis to treatment.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.