Age patterns of incidence of geriatric disease in the U.S. elderly population: Medicare-based analysis.

Loading...
Thumbnail Image

Date

2012-02

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

152
views
109
downloads

Citation Stats

Abstract

OBJECTIVES: To use the Medicare Files of Service Use (MFSU) to evaluate patterns in the incidence of aging-related diseases in the U.S. elderly population. DESIGN: Age-specific incidence rates of 19 aging-related diseases were evaluated using the National Long Term Care Survey (NLTCS) and the Surveillance, Epidemiology, and End Results (SEER) Registry data, both linked to MFSU (NLTCS-M and SEER-M, respectively), using an algorithm developed for individual date at onset evaluation. SETTING: A random sample from the entire U.S. elderly population (Medicare beneficiaries) was used in NLTCS, and the SEER Registry data covers 26% of the U.S. population. PARTICIPANTS: Thirty-four thousand seventy-seven individuals from NLTCS-M and 2,154,598 from SEER-M. MEASUREMENTS: Individual medical histories were reconstructed using information on diagnoses coded in MFSU, dates of medical services and procedures, and Medicare enrollment and disenrollment. RESULTS: The majority of diseases (e.g., prostate cancer, asthma, and diabetes mellitus) had a monotonic decline (or decline after a short period of increase) in incidence with age. A monotonic increase in incidence with age with a subsequent leveling off and decline was observed for myocardial infarction, stroke, heart failure, ulcer, and Alzheimer's disease. An inverted U-shaped age pattern was detected for lung and colon carcinomas, Parkinson's disease, and renal failure. The results obtained from the NLTCS-M and SEER-M were in agreement (excluding an excess for circulatory diseases in the NLTCS-M). A sensitivity analysis proved the stability of the incidence rates evaluated. CONCLUSION: The developed computational approaches applied to the nationally representative Medicare-based data sets allow reconstruction of age patterns of disease incidence in the U.S. elderly population at the national level with unprecedented statistical accuracy and stability with respect to systematic biases.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1111/j.1532-5415.2011.03786.x

Publication Info

Akushevich, Igor, Julia Kravchenko, Svetlana Ukraintseva, Konstantin Arbeev and Anatoliy I Yashin (2012). Age patterns of incidence of geriatric disease in the U.S. elderly population: Medicare-based analysis. J Am Geriatr Soc, 60(2). pp. 323–327. 10.1111/j.1532-5415.2011.03786.x Retrieved from https://hdl.handle.net/10161/14851.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Igor Akushevich

Research Professor in the Social Science Research Institute
Ukraintseva

Svetlana Ukraintseva

Research Professor in the Social Science Research Institute

Dr. Ukraintseva studies causes of human aging and related decline in resilience, to identify genetic and other factors responsible for the increase in mortality risk with age eventually limiting longevity. She explores complex relationships, including trade-offs, between physiological aging-changes and risks of major diseases (with emphasis on Alzheimer’s and cancer), as well as survival, to find new genetic and other targets for anti-aging interventions and disease prevention. She also investigates possibilities of repurposing of existing vaccines and treatments for AD prevention and interventions into the aging. For this, Dr. Ukraintseva and her team use data from several large human studies containing rich genetic and phenotypic information (including longitudinal measurements) on thousands of individuals. Dr. Ukraintseva is a PI and Key Investigator on several NIH funded grants, and has more than 130 peer-reviewed publications, including in major journals such as Nature Reviews, Stroke, European Journal of Human Genetics, and some other.

Arbeev

Konstantin Arbeev

Associate Research Professor in the Social Science Research Institute

Konstantin G. Arbeev received the M.S. degree in Applied Mathematics from Moscow State University (branch in Ulyanovsk, Russia) in 1995 and the Ph.D. degree in Mathematics and Physics (specialization in Theoretical Foundations of Mathematical Modeling, Numerical Methods and Programming) from Ulyanovsk State University (Russia) in 1999. He was a post-doctoral fellow in Max Planck Institute for Demographic Research in Rostock (Germany) before moving to Duke University in 2004 to work as a Research Scientist and a Senior Research Scientist in the Department of Sociology and the Social Science Research Institute (SSRI).  He is currently an Associate Research Professor in SSRI. Dr. Arbeev's major research interests are related to three interconnected fields of biodemography, biostatistics and genetic epidemiology as pertains to research on aging. The focus of his research is on discovering genetic and non-genetic factors that can affect the process of aging and determine longevity and healthy lifespan. He is interested in both methodological advances in this research area as well as their practical applications to analyses of large-scale longitudinal studies with phenotypic, genetic and, recently, genomic information. Dr. Arbeev authored and co-authored more than 150 peer-reviewed publications in these areas.

Yashin

Anatoli I. Yashin

Research Professor in the Social Science Research Institute

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.