Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice.
Date
2018-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Experimental cardiac arrest (CA) in aging research is infrequently studied in part due to the limitation of animal models. We aimed to develop an easily performed mouse CA model to meet this need. A standard mouse KCl-induced CA model using chest compressions and intravenous epinephrine for resuscitation was modified by blood withdrawal prior to CA onset, so as to decrease the requisite KCl dose to induce CA by decreasing the circulating blood volume. The modification was then compared to the standard model in young adult mice subjected to 8 min CA. 22-month old mice were then subjected to 8 min CA, resuscitated, and compared to young adult mice. Post-CA functional recovery was evaluated by measuring spontaneous locomotor activity pre-injury, and on post-CA days 1, 2, and 3. Neurological score and brain histology were examined on day 3. Brain elF2α phosphorylation levels were measured at 1 h to verify tissue stress. Compared to the standard model, the modification decreased cardiopulmonary resuscitation duration and increased 3-day survival in young mice. For aged mice, survival was 100 % at 24 h and 54% at 72 h. Neurological deficit was present 3 days post-CA, although more severe versus young mice. Mild neuronal necrosis was present in the cortex and hippocampus. The modified model markedly induced elF2α phosphorylation in both age groups. This modified procedure makes the CA model feasible in aged mice and provides a practical platform for understanding injury mechanisms and developing therapeutics for elderly patients.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Liu, Huaqin, Zhui Yu, Ying Li, Bin Xu, Baihui Yan, Wulf Paschen, David S Warner, Wei Yang, et al. (2018). Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice. Aging and disease, 9(1). pp. 31–39. 10.14336/ad.2017.0221 Retrieved from https://hdl.handle.net/10161/23252.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Wei Yang
Huaxin Sheng
We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction. Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.