The dimensional evolution of structure and dynamics in hard sphere liquids

Loading...
Thumbnail Image

Date

2021-11-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

15
views
9
downloads

Abstract

The formulation of the mean-field, infinite-dimensional solution of hard sphere glasses is a significant milestone for theoretical physics. How relevant this description might be for understanding low-dimensional glass-forming liquids, however, remains unclear. These liquids indeed exhibit a complex interplay between structure and dynamics, and the importance of this interplay might only slowly diminish as dimension $d$ increases. A careful numerical assessment of the matter has long been hindered by the exponential increase of computational costs with $d$. By revisiting a once common simulation technique involving the use of periodic boundary conditions modeled on $D_d$ lattices, we here partly sidestep this difficulty, thus allowing the study of hard sphere liquids up to $d=13$. Parallel efforts by Mangeat and Zamponi [Phys. Rev. E 93, 012609 (2016)] have expanded the mean-field description of glasses to finite $d$ by leveraging standard liquid-state theory, and thus help bridge the gap from the other direction. The relatively smooth evolution of both structure and dynamics across the $d$ gap allows us to relate the two approaches, and to identify some of the missing features that a finite-$d$ theory of glasses might hope to include to achieve near quantitative agreement.

Department

Description

Provenance

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.