Quantitation of the next-generation imipridone ONC206 in human plasma by a simple and sensitive UPLC-MS/MS assay for clinical pharmacokinetic application.
Date
2022-05
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
ONC206 is an imipridone derivative that is being developed clinically as a single agent given orally in a first-in-human trial (NCT04541082). This ongoing clinical trial requires pharmacokinetic analysis of ONC206 to fully characterize its pharmacologic profile. There is currently no published bioanalytical method for ONC206 quantitation. To understand the clinical pharmacokinetics of ONC206, a sensitive yet simple uHPLC-MS/MS method for quantitation of ONC206 in human plasma was developed. Protein-precipitation allowed rapid and sensitive bioanalytical measurement of ONC206 in human plasma. A Phenomenex Kinetex C18 (50 ×2.1 mm, 1.3 µm, 100 Å) analytical column achieved symmetrical and sharp chromatography peaks of ONC206 and the internal standard, [2H]7-ONC206, which were detected using multiple reaction monitoring. The assay calibration range was 1-500 ng/mL and was best fit by a linear regression model (r2 > 0.99732 ± 0.0010). The method proved accurate (< ± 9% deviation), precise (<11%CV), selective and specific with no interference and low inter-lot matrix variability. ONC206 demonstrated excellent short-term, long-term, and multiple freeze-thaw cycle stability in solution and human plasma. This fully validated method was used to quantitate ONC206 plasma concentrations from patients enrolled in the aforementioned clinical trial at the NCI to demonstrate its clinical applicability.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Goodell, Jennifer C, Sara M Zimmerman, Cody J Peer, Varun Prabhu, Tyler Yin, William J Richardson, Arya Azinfar, John A Dunn, et al. (2022). Quantitation of the next-generation imipridone ONC206 in human plasma by a simple and sensitive UPLC-MS/MS assay for clinical pharmacokinetic application. Journal of pharmaceutical and biomedical analysis, 213. p. 114685. 10.1016/j.jpba.2022.114685 Retrieved from https://hdl.handle.net/10161/31404.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
William James Richardson
- Current research includes investigation of biomechanical aspects of cervical injury with head impact. This involves cadaveric work with high-speed photography and load cells to ascertain the mechanism for spinal fractures.
2. An animal model is being used to evaluate the biomechanics of cervical laminectomy versus laminoplasty compared to the normal spine. A portion of the animals are developing myelopathy secondary to instability after the surgical procedure and this is being evaluated with MRI scanning as well as mechanical and radiographic testing.
3. Studies are being performed to develop an impedance pedicle probe to aid safe insertion of pedicular instrumentation in the lumbar spine. Ongoing studies are being performed to define the optimal frequency for the probe to yield the most sensitive and specific device. Hopefully this will lead to development of a device for human use. Studies will compare impedance probe to currently used EMG techniques to see if combing them will lead to greater sensitivity and specificity.
4. Studies are being completed on testing particular pull-out strength and doing a multi-varied analysis looking at size of the pedicle and bone density by two different techniques.
5. Current work is ongoing to develop an outcomes instrument and database to be used in the outpatient setting for patients with spinal complaints, both cervical and lumbar. The device will be used to evaluate clinical effectiveness for a variety of treatments for spinal conditions and to look at patient satisfaction issues.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.